Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09-27

AUTHORS

Jesse D. Canterbury, Gennifer E. Merrihew, Michael J. MacCoss, David R. Goodlett, Scott A. Shaffer

ABSTRACT

The most common data collection in shotgun proteomics is via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest. An alternative to DDA is data-independent acquisition (DIA), a process in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum, thus potentially offering a more comprehensive analysis of peptides than DDA. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified with an electrodynamic ion funnel, and an LTQ Velos. These instruments represent both older (LTQ) and newer (LTQ Velos) ion trap designs (i.e., linear versus dual ion traps, respectively), and allow direct comparison of peptide identifications using both DDA and DIA analysis. Further, as the LTQ Velos has an enhanced “S-lens” ion guide to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, whereas the faster scanning LTQ Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design.Graphical Abstractᅟ More... »

PAGES

2048-2059

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13361-014-0981-1

DOI

http://dx.doi.org/10.1007/s13361-014-0981-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000824056

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25261218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medicinal and Biomolecular Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Electrospray Ionization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tandem Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yeasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Thermo Fisher Scientific, 355 River Oaks Parkway, 95134, San Jose, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.418190.5", 
          "name": [
            "Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA", 
            "Thermo Fisher Scientific, 355 River Oaks Parkway, 95134, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canterbury", 
        "givenName": "Jesse D.", 
        "id": "sg:person.01010133215.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010133215.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merrihew", 
        "givenName": "Gennifer E.", 
        "id": "sg:person.01143340753.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143340753.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacCoss", 
        "givenName": "Michael J.", 
        "id": "sg:person.01242424567.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242424567.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland School of Pharmacy, 20 North Pine Street, 21201, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Medicinal Chemistry, University of Washington, 98195, Seattle, WA, USA", 
            "University of Maryland School of Pharmacy, 20 North Pine Street, 21201, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodlett", 
        "givenName": "David R.", 
        "id": "sg:person.01044126157.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, 01605, Worcester, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168645.8", 
          "name": [
            "Department of Medicinal Chemistry, University of Washington, 98195, Seattle, WA, USA", 
            "Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, 01605, Worcester, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaffer", 
        "givenName": "Scott A.", 
        "id": "sg:person.0607112645.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607112645.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029861497", 
          "https://doi.org/10.1038/nmeth1113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2007.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008010219", 
          "https://doi.org/10.1016/j.jasms.2007.05.018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042735274", 
          "https://doi.org/10.1038/nmeth705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012180132", 
          "https://doi.org/10.1038/nature01511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016490499", 
          "https://doi.org/10.1038/nature02046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006167556", 
          "https://doi.org/10.1038/nmeth.2528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(96)00057-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052975267", 
          "https://doi.org/10.1016/1044-0305(96)00057-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2004.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044083810", 
          "https://doi.org/10.1016/j.jasms.2004.11.003"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09-27", 
    "datePublishedReg": "2014-09-27", 
    "description": "The most common data collection in shotgun proteomics is via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest. An alternative to DDA is data-independent acquisition (DIA), a process in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum, thus potentially offering a more comprehensive analysis of peptides than DDA. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified with an electrodynamic ion funnel, and an LTQ Velos. These instruments represent both older (LTQ) and newer (LTQ Velos) ion trap designs (i.e., linear versus dual ion traps, respectively), and allow direct comparison of peptide identifications using both DDA and DIA analysis. Further, as the LTQ Velos has an enhanced \u201cS-lens\u201d ion guide to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, whereas the faster scanning LTQ Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design.Graphical Abstract\u115f", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13361-014-0981-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439752", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2498483", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439911", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "publisher": "American Chemical Society (ACS)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "data-independent acquisition", 
      "data-dependent acquisition", 
      "data collection", 
      "shotgun proteomics", 
      "peptides", 
      "direct comparison", 
      "DDA mode", 
      "proteomics", 
      "S-lens", 
      "more protein", 
      "lysates", 
      "abundant signals", 
      "instrument", 
      "Velos", 
      "guide", 
      "sensitivity", 
      "protein", 
      "insoluble fraction", 
      "differences", 
      "acquisition", 
      "MS/MS acquisition", 
      "regard", 
      "analysis", 
      "comparison", 
      "DIA mode", 
      "relative abundance", 
      "comprehensive analysis", 
      "LTQ", 
      "identification", 
      "routines", 
      "MS acquisition", 
      "alternative", 
      "ion flux", 
      "fraction", 
      "reasons", 
      "strategies", 
      "common data collection", 
      "results", 
      "instrumentation", 
      "collection", 
      "prioritization", 
      "design", 
      "different designs", 
      "linear ion trap instrument", 
      "model", 
      "process", 
      "signals", 
      "range", 
      "DIA analysis", 
      "ion trap instrumentation", 
      "abundance", 
      "ion trap instrument", 
      "trap instrument", 
      "control routines", 
      "funnel", 
      "yeast lysate", 
      "mode", 
      "precursor ions", 
      "spectra", 
      "work", 
      "peptide identification", 
      "data acquisition strategy", 
      "acquisition strategies", 
      "trap design", 
      "speed", 
      "mass spectra", 
      "flux", 
      "scan speed", 
      "optics", 
      "ions", 
      "Graphical", 
      "ion funnel", 
      "ion trap design", 
      "ion guide", 
      "electrodynamic ion funnel", 
      "LTQ Velos", 
      "ion optics"
    ], 
    "name": "Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics", 
    "pagination": "2048-2059", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000824056"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13361-014-0981-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25261218"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13361-014-0981-1", 
      "https://app.dimensions.ai/details/publication/pub.1000824056"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_647.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13361-014-0981-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13361-014-0981-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13361-014-0981-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13361-014-0981-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13361-014-0981-1'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      119 URIs      101 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13361-014-0981-1 schema:about N3874447d6cfb4ed2846319d3b6f13bb4
2 N5cc0c2019b9942008aba692b7f6bb396
3 N936ef184947b4688ae4d4dbf6b05bf34
4 Na202eeb577a546e4a13f031d5caa76b3
5 Ndee59b980a4c46c58c0cfc2617460863
6 Ne1723101a84440c8bc58d878ffd02d37
7 Nfd0fbf5499e946f4a077d6603b8ba53f
8 anzsrc-for:03
9 anzsrc-for:0301
10 anzsrc-for:0304
11 anzsrc-for:0306
12 schema:author N52655072d83e48fca25f784f0e66f240
13 schema:citation sg:pub.10.1016/1044-0305(96)00057-8
14 sg:pub.10.1016/j.jasms.2004.11.003
15 sg:pub.10.1016/j.jasms.2007.05.018
16 sg:pub.10.1038/nature01511
17 sg:pub.10.1038/nature02046
18 sg:pub.10.1038/nmeth.2528
19 sg:pub.10.1038/nmeth1113
20 sg:pub.10.1038/nmeth705
21 schema:datePublished 2014-09-27
22 schema:datePublishedReg 2014-09-27
23 schema:description The most common data collection in shotgun proteomics is via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest. An alternative to DDA is data-independent acquisition (DIA), a process in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum, thus potentially offering a more comprehensive analysis of peptides than DDA. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified with an electrodynamic ion funnel, and an LTQ Velos. These instruments represent both older (LTQ) and newer (LTQ Velos) ion trap designs (i.e., linear versus dual ion traps, respectively), and allow direct comparison of peptide identifications using both DDA and DIA analysis. Further, as the LTQ Velos has an enhanced “S-lens” ion guide to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, whereas the faster scanning LTQ Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design.Graphical Abstractᅟ
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N3d1079dd4fc64475996ae0b82922bbc9
27 N63d032417da04f93b134d4c4d003b1f6
28 sg:journal.1100508
29 schema:keywords DDA mode
30 DIA analysis
31 DIA mode
32 Graphical
33 LTQ
34 LTQ Velos
35 MS acquisition
36 MS/MS acquisition
37 S-lens
38 Velos
39 abundance
40 abundant signals
41 acquisition
42 acquisition strategies
43 alternative
44 analysis
45 collection
46 common data collection
47 comparison
48 comprehensive analysis
49 control routines
50 data acquisition strategy
51 data collection
52 data-dependent acquisition
53 data-independent acquisition
54 design
55 differences
56 different designs
57 direct comparison
58 electrodynamic ion funnel
59 flux
60 fraction
61 funnel
62 guide
63 identification
64 insoluble fraction
65 instrument
66 instrumentation
67 ion flux
68 ion funnel
69 ion guide
70 ion optics
71 ion trap design
72 ion trap instrument
73 ion trap instrumentation
74 ions
75 linear ion trap instrument
76 lysates
77 mass spectra
78 mode
79 model
80 more protein
81 optics
82 peptide identification
83 peptides
84 precursor ions
85 prioritization
86 process
87 protein
88 proteomics
89 range
90 reasons
91 regard
92 relative abundance
93 results
94 routines
95 scan speed
96 sensitivity
97 shotgun proteomics
98 signals
99 spectra
100 speed
101 strategies
102 trap design
103 trap instrument
104 work
105 yeast lysate
106 schema:name Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics
107 schema:pagination 2048-2059
108 schema:productId N26261c3595824d968e599c285663795d
109 N7f19b50ee748474092c07d8bd3198b28
110 N95bc6cfd0bc145ceb1048da86222ea13
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000824056
112 https://doi.org/10.1007/s13361-014-0981-1
113 schema:sdDatePublished 2022-09-02T15:58
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N981a7a01437247c0af52fe5c17e5b46f
116 schema:url https://doi.org/10.1007/s13361-014-0981-1
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N26261c3595824d968e599c285663795d schema:name doi
121 schema:value 10.1007/s13361-014-0981-1
122 rdf:type schema:PropertyValue
123 N29c12c255b98495fb7dc4cf11f5c21a6 rdf:first sg:person.01242424567.91
124 rdf:rest N8f9a043bfbd24f65b58be7dfefe8c3a7
125 N3874447d6cfb4ed2846319d3b6f13bb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Spectrometry, Mass, Electrospray Ionization
127 rdf:type schema:DefinedTerm
128 N3d1079dd4fc64475996ae0b82922bbc9 schema:issueNumber 12
129 rdf:type schema:PublicationIssue
130 N52655072d83e48fca25f784f0e66f240 rdf:first sg:person.01010133215.14
131 rdf:rest N8a81c72d5078434aa123ac42f5603eea
132 N5cc0c2019b9942008aba692b7f6bb396 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Tandem Mass Spectrometry
134 rdf:type schema:DefinedTerm
135 N63d032417da04f93b134d4c4d003b1f6 schema:volumeNumber 25
136 rdf:type schema:PublicationVolume
137 N7f19b50ee748474092c07d8bd3198b28 schema:name pubmed_id
138 schema:value 25261218
139 rdf:type schema:PropertyValue
140 N8a81c72d5078434aa123ac42f5603eea rdf:first sg:person.01143340753.94
141 rdf:rest N29c12c255b98495fb7dc4cf11f5c21a6
142 N8f9a043bfbd24f65b58be7dfefe8c3a7 rdf:first sg:person.01044126157.13
143 rdf:rest Nb4ae03efdef4475dafba1e431830d47b
144 N936ef184947b4688ae4d4dbf6b05bf34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Databases, Protein
146 rdf:type schema:DefinedTerm
147 N95bc6cfd0bc145ceb1048da86222ea13 schema:name dimensions_id
148 schema:value pub.1000824056
149 rdf:type schema:PropertyValue
150 N981a7a01437247c0af52fe5c17e5b46f schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 Na202eeb577a546e4a13f031d5caa76b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Yeasts
154 rdf:type schema:DefinedTerm
155 Nb4ae03efdef4475dafba1e431830d47b rdf:first sg:person.0607112645.93
156 rdf:rest rdf:nil
157 Ndee59b980a4c46c58c0cfc2617460863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Peptide Mapping
159 rdf:type schema:DefinedTerm
160 Ne1723101a84440c8bc58d878ffd02d37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Proteomics
162 rdf:type schema:DefinedTerm
163 Nfd0fbf5499e946f4a077d6603b8ba53f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Fungal Proteins
165 rdf:type schema:DefinedTerm
166 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
167 schema:name Chemical Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
170 schema:name Analytical Chemistry
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medicinal and Biomolecular Chemistry
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
176 schema:name Physical Chemistry (incl. Structural)
177 rdf:type schema:DefinedTerm
178 sg:grant.2439752 http://pending.schema.org/fundedItem sg:pub.10.1007/s13361-014-0981-1
179 rdf:type schema:MonetaryGrant
180 sg:grant.2439911 http://pending.schema.org/fundedItem sg:pub.10.1007/s13361-014-0981-1
181 rdf:type schema:MonetaryGrant
182 sg:grant.2498483 http://pending.schema.org/fundedItem sg:pub.10.1007/s13361-014-0981-1
183 rdf:type schema:MonetaryGrant
184 sg:journal.1100508 schema:issn 1044-0305
185 1879-1123
186 schema:name Journal of The American Society for Mass Spectrometry
187 schema:publisher American Chemical Society (ACS)
188 rdf:type schema:Periodical
189 sg:person.01010133215.14 schema:affiliation grid-institutes:grid.418190.5
190 schema:familyName Canterbury
191 schema:givenName Jesse D.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010133215.14
193 rdf:type schema:Person
194 sg:person.01044126157.13 schema:affiliation grid-institutes:grid.411024.2
195 schema:familyName Goodlett
196 schema:givenName David R.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13
198 rdf:type schema:Person
199 sg:person.01143340753.94 schema:affiliation grid-institutes:grid.34477.33
200 schema:familyName Merrihew
201 schema:givenName Gennifer E.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143340753.94
203 rdf:type schema:Person
204 sg:person.01242424567.91 schema:affiliation grid-institutes:grid.34477.33
205 schema:familyName MacCoss
206 schema:givenName Michael J.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242424567.91
208 rdf:type schema:Person
209 sg:person.0607112645.93 schema:affiliation grid-institutes:grid.168645.8
210 schema:familyName Shaffer
211 schema:givenName Scott A.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607112645.93
213 rdf:type schema:Person
214 sg:pub.10.1016/1044-0305(96)00057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052975267
215 https://doi.org/10.1016/1044-0305(96)00057-8
216 rdf:type schema:CreativeWork
217 sg:pub.10.1016/j.jasms.2004.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044083810
218 https://doi.org/10.1016/j.jasms.2004.11.003
219 rdf:type schema:CreativeWork
220 sg:pub.10.1016/j.jasms.2007.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008010219
221 https://doi.org/10.1016/j.jasms.2007.05.018
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nature01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
224 https://doi.org/10.1038/nature01511
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nature02046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016490499
227 https://doi.org/10.1038/nature02046
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nmeth.2528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006167556
230 https://doi.org/10.1038/nmeth.2528
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nmeth1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029861497
233 https://doi.org/10.1038/nmeth1113
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nmeth705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042735274
236 https://doi.org/10.1038/nmeth705
237 rdf:type schema:CreativeWork
238 grid-institutes:grid.168645.8 schema:alternateName Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, 01605, Worcester, MA, USA
239 schema:name Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, 01605, Worcester, MA, USA
240 Department of Medicinal Chemistry, University of Washington, 98195, Seattle, WA, USA
241 rdf:type schema:Organization
242 grid-institutes:grid.34477.33 schema:alternateName Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA
243 schema:name Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA
244 rdf:type schema:Organization
245 grid-institutes:grid.411024.2 schema:alternateName University of Maryland School of Pharmacy, 20 North Pine Street, 21201, Baltimore, MD, USA
246 schema:name Department of Medicinal Chemistry, University of Washington, 98195, Seattle, WA, USA
247 University of Maryland School of Pharmacy, 20 North Pine Street, 21201, Baltimore, MD, USA
248 rdf:type schema:Organization
249 grid-institutes:grid.418190.5 schema:alternateName Thermo Fisher Scientific, 355 River Oaks Parkway, 95134, San Jose, CA, USA
250 schema:name Department of Genome Sciences, University of Washington, 98195, Seattle, WA, USA
251 Thermo Fisher Scientific, 355 River Oaks Parkway, 95134, San Jose, CA, USA
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...