Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09-05

AUTHORS

Huisong Pak, Frederic Nikitin, Florent Gluck, Frederique Lisacek, Alexander Scherl, Markus Muller

ABSTRACT

Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window (m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400–1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.Figureᅟ More... »

PAGES

1862-1871

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13361-013-0720-z

DOI

http://dx.doi.org/10.1007/s13361-013-0720-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010291447

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24006250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tandem Mass Spectrometry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Geneva, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "University of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pak", 
        "givenName": "Huisong", 
        "id": "sg:person.01151605300.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151605300.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitin", 
        "givenName": "Frederic", 
        "id": "sg:person.01127451206.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127451206.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Centre for Applied Human Toxicology, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Geneva, Geneva, Switzerland", 
            "Swiss Centre for Applied Human Toxicology, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gluck", 
        "givenName": "Florent", 
        "id": "sg:person.0767307231.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767307231.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lisacek", 
        "givenName": "Frederique", 
        "id": "sg:person.0674012177.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674012177.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Centre for Applied Human Toxicology, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Geneva, Geneva, Switzerland", 
            "Swiss Centre for Applied Human Toxicology, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scherl", 
        "givenName": "Alexander", 
        "id": "sg:person.014341170207.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341170207.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "University of Geneva, Geneva, Switzerland", 
            "SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muller", 
        "givenName": "Markus", 
        "id": "sg:person.0733663303.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733663303.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009487848", 
          "https://doi.org/10.1038/nmeth1019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/85686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050637706", 
          "https://doi.org/10.1038/85686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042735274", 
          "https://doi.org/10.1038/nmeth705"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09-05", 
    "datePublishedReg": "2013-09-05", 
    "description": "Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window (m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400\u20131400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8\u00a0% while reducing the number of submitted spectra by 18\u00a0% and the number of peaks by 55\u00a0%. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.Figure\u115f", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13361-013-0720-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5222458", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "publisher": "American Chemical Society (ACS)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "large data redundancy", 
      "data redundancy", 
      "source code", 
      "search performance", 
      "algorithm", 
      "tandem mass spectra", 
      "chimeric spectra", 
      "data analysis", 
      "peptide identification", 
      "software", 
      "redundancy", 
      "spectral similarity", 
      "scientific community", 
      "clustering", 
      "data-independent mode", 
      "MS/MS spectra", 
      "acquisition strategies", 
      "code", 
      "data reproducibility", 
      "window", 
      "number", 
      "performance", 
      "valid approach", 
      "selection", 
      "fragmentation spectra", 
      "identification", 
      "ion species", 
      "similarity", 
      "order", 
      "data", 
      "method", 
      "MS spectra", 
      "number of peaks", 
      "noise peaks", 
      "improvement", 
      "strategies", 
      "protein identification", 
      "community", 
      "significant number", 
      "spectra", 
      "approach", 
      "charge window", 
      "analysis", 
      "mode", 
      "addition", 
      "ions", 
      "peak", 
      "values", 
      "reproducibility", 
      "range", 
      "mass", 
      "mass spectra", 
      "mass window", 
      "profile", 
      "sensitivity", 
      "chromatographic elution", 
      "chromatographic elution profiles", 
      "abundance", 
      "absence", 
      "elution profiles", 
      "injection", 
      "species", 
      "precursor ions", 
      "ion selection", 
      "spectrometry", 
      "multiple injections", 
      "mass spectrometry", 
      "data-independent mass spectrometry", 
      "elution", 
      "peptides", 
      "data-dependent ion selection", 
      "same precursor ion"
    ], 
    "name": "Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode", 
    "pagination": "1862-1871", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010291447"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13361-013-0720-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24006250"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13361-013-0720-z", 
      "https://app.dimensions.ai/details/publication/pub.1010291447"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13361-013-0720-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13361-013-0720-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13361-013-0720-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13361-013-0720-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13361-013-0720-z'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      22 PREDICATES      109 URIs      98 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13361-013-0720-z schema:about N0eca2205d3e74f8193b32d835450a9c4
2 N2405661788c0466fb0ffacf2663dc54e
3 N40c56f95cd3d4810abec8e271baa2c0b
4 N44bf9e833fa04ca2b922c1eb5e5dea5a
5 N6fbedab4fb124c0aaa6d0060ca912a14
6 N8f943f0c16fd4e42b234eed17e79afda
7 Nc3737b3fdcde48668a0cb6a8ebe84b59
8 Ndec59e3f1966434b9c14df56e7d343b4
9 anzsrc-for:03
10 anzsrc-for:0301
11 schema:author N3d0ee7ea6b794ba79833497c733923a7
12 schema:citation sg:pub.10.1038/85686
13 sg:pub.10.1038/nmeth1019
14 sg:pub.10.1038/nmeth705
15 schema:datePublished 2013-09-05
16 schema:datePublishedReg 2013-09-05
17 schema:description Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window (m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400–1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.Figureᅟ
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N74c31e4d28e44fc7b1da89096c4aaf9a
22 N8cf78f31facb448fb8eb86bcaf7bdac0
23 sg:journal.1100508
24 schema:keywords MS spectra
25 MS/MS spectra
26 absence
27 abundance
28 acquisition strategies
29 addition
30 algorithm
31 analysis
32 approach
33 charge window
34 chimeric spectra
35 chromatographic elution
36 chromatographic elution profiles
37 clustering
38 code
39 community
40 data
41 data analysis
42 data redundancy
43 data reproducibility
44 data-dependent ion selection
45 data-independent mass spectrometry
46 data-independent mode
47 elution
48 elution profiles
49 fragmentation spectra
50 identification
51 improvement
52 injection
53 ion selection
54 ion species
55 ions
56 large data redundancy
57 mass
58 mass spectra
59 mass spectrometry
60 mass window
61 method
62 mode
63 multiple injections
64 noise peaks
65 number
66 number of peaks
67 order
68 peak
69 peptide identification
70 peptides
71 performance
72 precursor ions
73 profile
74 protein identification
75 range
76 redundancy
77 reproducibility
78 same precursor ion
79 scientific community
80 search performance
81 selection
82 sensitivity
83 significant number
84 similarity
85 software
86 source code
87 species
88 spectra
89 spectral similarity
90 spectrometry
91 strategies
92 tandem mass spectra
93 valid approach
94 values
95 window
96 schema:name Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode
97 schema:pagination 1862-1871
98 schema:productId N8a36c957149b486492004532e80e4865
99 Na90a22f584004c05b0c049b1aef3be99
100 Nc1a748ff5b4d4b2a8614cb419c928a59
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291447
102 https://doi.org/10.1007/s13361-013-0720-z
103 schema:sdDatePublished 2022-05-20T07:28
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher N015088114d644bd2af4ccb28f034af50
106 schema:url https://doi.org/10.1007/s13361-013-0720-z
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N015088114d644bd2af4ccb28f034af50 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N0eca2205d3e74f8193b32d835450a9c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Software
114 rdf:type schema:DefinedTerm
115 N2405661788c0466fb0ffacf2663dc54e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Proteins
117 rdf:type schema:DefinedTerm
118 N27b6b0daff7f4ba6922393c4bd936c32 rdf:first sg:person.0767307231.18
119 rdf:rest Nf2ae6cfdb2d7437b916ec69d2b51d4db
120 N3d0ee7ea6b794ba79833497c733923a7 rdf:first sg:person.01151605300.49
121 rdf:rest Nd8638ca0936541e9a4d0c253a50681fb
122 N40c56f95cd3d4810abec8e271baa2c0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Humans
124 rdf:type schema:DefinedTerm
125 N44bf9e833fa04ca2b922c1eb5e5dea5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Algorithms
127 rdf:type schema:DefinedTerm
128 N5ea13bb0a1744f348f73c9ca6b285432 rdf:first sg:person.0733663303.51
129 rdf:rest rdf:nil
130 N6fbedab4fb124c0aaa6d0060ca912a14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Cluster Analysis
132 rdf:type schema:DefinedTerm
133 N74c31e4d28e44fc7b1da89096c4aaf9a schema:issueNumber 12
134 rdf:type schema:PublicationIssue
135 N8a36c957149b486492004532e80e4865 schema:name dimensions_id
136 schema:value pub.1010291447
137 rdf:type schema:PropertyValue
138 N8cf78f31facb448fb8eb86bcaf7bdac0 schema:volumeNumber 24
139 rdf:type schema:PublicationVolume
140 N8f943f0c16fd4e42b234eed17e79afda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Proteomics
142 rdf:type schema:DefinedTerm
143 Na7c8b5c5f7a14a3faf45d24447dfbe51 rdf:first sg:person.014341170207.28
144 rdf:rest N5ea13bb0a1744f348f73c9ca6b285432
145 Na90a22f584004c05b0c049b1aef3be99 schema:name doi
146 schema:value 10.1007/s13361-013-0720-z
147 rdf:type schema:PropertyValue
148 Nc1a748ff5b4d4b2a8614cb419c928a59 schema:name pubmed_id
149 schema:value 24006250
150 rdf:type schema:PropertyValue
151 Nc3737b3fdcde48668a0cb6a8ebe84b59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Tandem Mass Spectrometry
153 rdf:type schema:DefinedTerm
154 Nd8638ca0936541e9a4d0c253a50681fb rdf:first sg:person.01127451206.50
155 rdf:rest N27b6b0daff7f4ba6922393c4bd936c32
156 Ndec59e3f1966434b9c14df56e7d343b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Cell Line
158 rdf:type schema:DefinedTerm
159 Nf2ae6cfdb2d7437b916ec69d2b51d4db rdf:first sg:person.0674012177.79
160 rdf:rest Na7c8b5c5f7a14a3faf45d24447dfbe51
161 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
162 schema:name Chemical Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
165 schema:name Analytical Chemistry
166 rdf:type schema:DefinedTerm
167 sg:grant.5222458 http://pending.schema.org/fundedItem sg:pub.10.1007/s13361-013-0720-z
168 rdf:type schema:MonetaryGrant
169 sg:journal.1100508 schema:issn 1044-0305
170 1879-1123
171 schema:name Journal of The American Society for Mass Spectrometry
172 schema:publisher American Chemical Society (ACS)
173 rdf:type schema:Periodical
174 sg:person.01127451206.50 schema:affiliation grid-institutes:grid.150338.c
175 schema:familyName Nikitin
176 schema:givenName Frederic
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127451206.50
178 rdf:type schema:Person
179 sg:person.01151605300.49 schema:affiliation grid-institutes:grid.8591.5
180 schema:familyName Pak
181 schema:givenName Huisong
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151605300.49
183 rdf:type schema:Person
184 sg:person.014341170207.28 schema:affiliation grid-institutes:None
185 schema:familyName Scherl
186 schema:givenName Alexander
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341170207.28
188 rdf:type schema:Person
189 sg:person.0674012177.79 schema:affiliation grid-institutes:grid.150338.c
190 schema:familyName Lisacek
191 schema:givenName Frederique
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674012177.79
193 rdf:type schema:Person
194 sg:person.0733663303.51 schema:affiliation grid-institutes:grid.150338.c
195 schema:familyName Muller
196 schema:givenName Markus
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733663303.51
198 rdf:type schema:Person
199 sg:person.0767307231.18 schema:affiliation grid-institutes:None
200 schema:familyName Gluck
201 schema:givenName Florent
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767307231.18
203 rdf:type schema:Person
204 sg:pub.10.1038/85686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637706
205 https://doi.org/10.1038/85686
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nmeth1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009487848
208 https://doi.org/10.1038/nmeth1019
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nmeth705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042735274
211 https://doi.org/10.1038/nmeth705
212 rdf:type schema:CreativeWork
213 grid-institutes:None schema:alternateName Swiss Centre for Applied Human Toxicology, Geneva, Switzerland
214 schema:name Swiss Centre for Applied Human Toxicology, Geneva, Switzerland
215 University of Geneva, Geneva, Switzerland
216 rdf:type schema:Organization
217 grid-institutes:grid.150338.c schema:alternateName SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland
218 schema:name SIB Swiss Institute of Bioinformatics, University Medical Center, 1, Rue Michel-Servet, 1211, Geneva 4, Switzerland
219 University of Geneva, Geneva, Switzerland
220 rdf:type schema:Organization
221 grid-institutes:grid.8591.5 schema:alternateName University of Geneva, Geneva, Switzerland
222 schema:name University of Geneva, Geneva, Switzerland
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...