Dynamically Harmonized FT-ICR Cell with Specially Shaped Electrodes for Compensation of Inhomogeneity of the Magnetic Field. Computer Simulations of the ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Yury I. Kostyukevich, Gleb N. Vladimirov, Eugene N. Nikolaev

ABSTRACT

The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field. More... »

PAGES

2198-2207

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13361-012-0480-1

DOI

http://dx.doi.org/10.1007/s13361-012-0480-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037669946

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22993044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electromagnetic Fields", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fourier Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnets", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Energy Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.434999.a", 
          "name": [
            "Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kostyukevich", 
        "givenName": "Yury I.", 
        "id": "sg:person.01334104407.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334104407.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biochemical Physics NM Emanuel", 
          "id": "https://www.grid.ac/institutes/grid.473785.a", 
          "name": [
            "Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia", 
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vladimirov", 
        "givenName": "Gleb N.", 
        "id": "sg:person.01035431534.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035431534.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedical Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418846.7", 
          "name": [
            "Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia", 
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia", 
            "Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "Eugene N.", 
        "id": "sg:person.01361360717.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361360717.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0168-1176(86)80012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001840219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar020177t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002771125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar020177t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002771125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2008.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003595449", 
          "https://doi.org/10.1016/j.jasms.2008.01.006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.4838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006195357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.4838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006195357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1176(89)85027-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016533024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1176(95)04233-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034449837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13361-011-0125-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040179121", 
          "https://doi.org/10.1007/s13361-011-0125-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040689360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2007.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041901793", 
          "https://doi.org/10.1016/j.jasms.2007.05.010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2008.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042097723", 
          "https://doi.org/10.1016/j.jasms.2008.05.016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1044-0305(98)00152-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047481101", 
          "https://doi.org/10.1016/s1044-0305(98)00152-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.3234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050653511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.20015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051394965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13361-011-0268-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052025428", 
          "https://doi.org/10.1007/s13361-011-0268-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034415p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054995099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034415p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054995099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac201546d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac201546d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac202804f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055002307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1717338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057784730"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000\u00a0Da (peptides) as well as ions with very high masses of up to 200\u00a0kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13361-012-0480-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5360650", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Dynamically Harmonized FT-ICR Cell with Specially Shaped Electrodes for Compensation of Inhomogeneity of the Magnetic Field. Computer Simulations of the Electric Field and Ion Motion Dynamics", 
    "pagination": "2198-2207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b372a03153ae3f8225eb2fa20b24ea4be5dd7f50e4899b06da514743d1d6133d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22993044"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9010412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13361-012-0480-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037669946"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13361-012-0480-1", 
      "https://app.dimensions.ai/details/publication/pub.1037669946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13361-012-0480-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13361-012-0480-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13361-012-0480-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13361-012-0480-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13361-012-0480-1'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      55 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13361-012-0480-1 schema:about N19c7697577994554b319be022bfd2a13
2 N367a68f4438d40bdad6cf8475deee9ac
3 N5518ec60afc2412095a3ab5b4c6f605a
4 N8169a6ffcdbb4679bda6d13e4f701ec4
5 N85e6c4089b9f4ed192a5afec4dbe0ba5
6 Nac6ce1287997491a980b9dd75f1ca6a2
7 Nedd690d120f74b2b88ecaf7bbf1be863
8 Nf6bba52d2a8a46d0848694016b4be529
9 anzsrc-for:02
10 anzsrc-for:0299
11 schema:author N6e9c564f92f0471aa01955f3678be801
12 schema:citation sg:pub.10.1007/s13361-011-0125-9
13 sg:pub.10.1007/s13361-011-0268-8
14 sg:pub.10.1016/j.jasms.2007.05.010
15 sg:pub.10.1016/j.jasms.2008.01.006
16 sg:pub.10.1016/j.jasms.2008.05.016
17 sg:pub.10.1016/s1044-0305(98)00152-4
18 https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k
19 https://doi.org/10.1002/mas.20015
20 https://doi.org/10.1002/rcm.3234
21 https://doi.org/10.1002/rcm.4838
22 https://doi.org/10.1016/0168-1176(86)80012-x
23 https://doi.org/10.1016/0168-1176(89)85027-x
24 https://doi.org/10.1016/0168-1176(95)04233-b
25 https://doi.org/10.1021/ac034415p
26 https://doi.org/10.1021/ac201546d
27 https://doi.org/10.1021/ac202804f
28 https://doi.org/10.1021/ar020177t
29 https://doi.org/10.1063/1.1717338
30 schema:datePublished 2012-12
31 schema:datePublishedReg 2012-12-01
32 schema:description The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf Ne88ae87c4f2141969b27e744c34d4796
37 Nf0d89c31613e4b27a0c5bb11adcdca46
38 sg:journal.1100508
39 schema:name Dynamically Harmonized FT-ICR Cell with Specially Shaped Electrodes for Compensation of Inhomogeneity of the Magnetic Field. Computer Simulations of the Electric Field and Ion Motion Dynamics
40 schema:pagination 2198-2207
41 schema:productId N115e64edb7e940729cf53cef72dddf06
42 N7b83492b3b3a475ba5a972ba2aad6c4a
43 N9229f9e3e5d84b2088329400c3e969c0
44 Neddafc77cadb42358f3b0bf77ed89383
45 Nf63814b3d7ab4e5397bb74a23435f03a
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037669946
47 https://doi.org/10.1007/s13361-012-0480-1
48 schema:sdDatePublished 2019-04-10T14:12
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N1d838a65487e4038a0e5121108cefd99
51 schema:url http://link.springer.com/10.1007%2Fs13361-012-0480-1
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N115e64edb7e940729cf53cef72dddf06 schema:name dimensions_id
56 schema:value pub.1037669946
57 rdf:type schema:PropertyValue
58 N19c7697577994554b319be022bfd2a13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Molecular Weight
60 rdf:type schema:DefinedTerm
61 N1d838a65487e4038a0e5121108cefd99 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N1db0ad9b30a443d696fd6cc576b66a10 rdf:first sg:person.01361360717.33
64 rdf:rest rdf:nil
65 N367a68f4438d40bdad6cf8475deee9ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Fourier Analysis
67 rdf:type schema:DefinedTerm
68 N5518ec60afc2412095a3ab5b4c6f605a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Models, Theoretical
70 rdf:type schema:DefinedTerm
71 N6e9c564f92f0471aa01955f3678be801 rdf:first sg:person.01334104407.56
72 rdf:rest Nb37ec1a689ac4e1e93b644b79c97ab50
73 N7b83492b3b3a475ba5a972ba2aad6c4a schema:name pubmed_id
74 schema:value 22993044
75 rdf:type schema:PropertyValue
76 N8169a6ffcdbb4679bda6d13e4f701ec4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Electromagnetic Fields
78 rdf:type schema:DefinedTerm
79 N85e6c4089b9f4ed192a5afec4dbe0ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Magnets
81 rdf:type schema:DefinedTerm
82 N9229f9e3e5d84b2088329400c3e969c0 schema:name doi
83 schema:value 10.1007/s13361-012-0480-1
84 rdf:type schema:PropertyValue
85 Nac6ce1287997491a980b9dd75f1ca6a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Mass Spectrometry
87 rdf:type schema:DefinedTerm
88 Nb37ec1a689ac4e1e93b644b79c97ab50 rdf:first sg:person.01035431534.19
89 rdf:rest N1db0ad9b30a443d696fd6cc576b66a10
90 Ne88ae87c4f2141969b27e744c34d4796 schema:issueNumber 12
91 rdf:type schema:PublicationIssue
92 Nedd690d120f74b2b88ecaf7bbf1be863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Computer Simulation
94 rdf:type schema:DefinedTerm
95 Neddafc77cadb42358f3b0bf77ed89383 schema:name nlm_unique_id
96 schema:value 9010412
97 rdf:type schema:PropertyValue
98 Nf0d89c31613e4b27a0c5bb11adcdca46 schema:volumeNumber 23
99 rdf:type schema:PublicationVolume
100 Nf63814b3d7ab4e5397bb74a23435f03a schema:name readcube_id
101 schema:value b372a03153ae3f8225eb2fa20b24ea4be5dd7f50e4899b06da514743d1d6133d
102 rdf:type schema:PropertyValue
103 Nf6bba52d2a8a46d0848694016b4be529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Peptides
105 rdf:type schema:DefinedTerm
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
110 schema:name Other Physical Sciences
111 rdf:type schema:DefinedTerm
112 sg:grant.5360650 http://pending.schema.org/fundedItem sg:pub.10.1007/s13361-012-0480-1
113 rdf:type schema:MonetaryGrant
114 sg:journal.1100508 schema:issn 1044-0305
115 1879-1123
116 schema:name Journal of The American Society for Mass Spectrometry
117 rdf:type schema:Periodical
118 sg:person.01035431534.19 schema:affiliation https://www.grid.ac/institutes/grid.473785.a
119 schema:familyName Vladimirov
120 schema:givenName Gleb N.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035431534.19
122 rdf:type schema:Person
123 sg:person.01334104407.56 schema:affiliation https://www.grid.ac/institutes/grid.434999.a
124 schema:familyName Kostyukevich
125 schema:givenName Yury I.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334104407.56
127 rdf:type schema:Person
128 sg:person.01361360717.33 schema:affiliation https://www.grid.ac/institutes/grid.418846.7
129 schema:familyName Nikolaev
130 schema:givenName Eugene N.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361360717.33
132 rdf:type schema:Person
133 sg:pub.10.1007/s13361-011-0125-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040179121
134 https://doi.org/10.1007/s13361-011-0125-9
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s13361-011-0268-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052025428
137 https://doi.org/10.1007/s13361-011-0268-8
138 rdf:type schema:CreativeWork
139 sg:pub.10.1016/j.jasms.2007.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041901793
140 https://doi.org/10.1016/j.jasms.2007.05.010
141 rdf:type schema:CreativeWork
142 sg:pub.10.1016/j.jasms.2008.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003595449
143 https://doi.org/10.1016/j.jasms.2008.01.006
144 rdf:type schema:CreativeWork
145 sg:pub.10.1016/j.jasms.2008.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042097723
146 https://doi.org/10.1016/j.jasms.2008.05.016
147 rdf:type schema:CreativeWork
148 sg:pub.10.1016/s1044-0305(98)00152-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047481101
149 https://doi.org/10.1016/s1044-0305(98)00152-4
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1040689360
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/mas.20015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051394965
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/rcm.3234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050653511
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/rcm.4838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006195357
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0168-1176(86)80012-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001840219
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0168-1176(89)85027-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016533024
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0168-1176(95)04233-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1034449837
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/ac034415p schema:sameAs https://app.dimensions.ai/details/publication/pub.1054995099
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/ac201546d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055001858
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/ac202804f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055002307
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/ar020177t schema:sameAs https://app.dimensions.ai/details/publication/pub.1002771125
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1063/1.1717338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057784730
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.418846.7 schema:alternateName Institute of Biomedical Chemistry
176 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
177 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
178 Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.434999.a schema:alternateName Institute of Energy Problems of Chemical Physics
181 schema:name Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.473785.a schema:alternateName Institute of Biochemical Physics NM Emanuel
184 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
185 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...