Assessing the degree of stratification between closely related Holstein-Friesian populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Joanna Szyda, Tomasz Suchocki, Saber Qanbari, Zengting Liu, Henner Simianer

ABSTRACT

Genomic information is an important part of the routine evaluation of dairy cattle and provides the wide availability of animals genotyped using single nucleotide polymorphism (SNP) microarrays. We analyzed 2243 Polish and 2294 German Holstein-Friesian bulls genotyped using the Illumina BovineSNP50 BeadChip. For each bull, estimated breeding values (EBVs) calculated from national routine genetic evaluation were available for production traits and for somatic cell score (SCS). Separately for each population, we estimated SNP haplotypes, pairwise linkage disequilibrium (LD), and SNP effects. The SNP genetic covariance between both populations was estimated using a bivariate mixed model. The average LD was lower in the Polish than in the German population and, with increasing genomic distance, LD decays 1.7 times more rapidly in German than in Polish cattle. The comparison of SNP allele frequencies for base populations estimated separately using Polish and German data revealed a very good agreement. The comparison of genetic effects corresponding to various window lengths defined in bp emerged a systematic pattern: regardless of the length of the compared region, few significant differences were found for production traits, while many were observed for SCS. For each trait, the German population had much higher SNP variances than the Polish population and the genetic covariance estimates were all positive. Depending on traits' inheritance mode, the additive genetic variation can be stored in many genes following the infinitesimal model (like for SCS) or distributed between genes with high effects and the polygenic "background" (like for production traits). Accounting for those differences has implications on the prospective international genomic evaluation. More... »

PAGES

521-526

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13353-017-0409-2

DOI

http://dx.doi.org/10.1007/s13353-017-0409-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092114896

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28986737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research Institute of Animal Production", 
          "id": "https://www.grid.ac/institutes/grid.419741.e", 
          "name": [
            "Biostatistics Group, Department of Genetics, Wroc\u0142aw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroc\u0142aw, Poland", 
            "National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szyda", 
        "givenName": "Joanna", 
        "id": "sg:person.0623327551.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623327551.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Institute of Animal Production", 
          "id": "https://www.grid.ac/institutes/grid.419741.e", 
          "name": [
            "Biostatistics Group, Department of Genetics, Wroc\u0142aw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroc\u0142aw, Poland", 
            "National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suchocki", 
        "givenName": "Tomasz", 
        "id": "sg:person.0750535434.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750535434.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Animal Breeding and Genetics Group, Georg-August-Universit\u00e4t G\u00f6ttingen, Albrecht-Thaer-Weg 3, 37075, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qanbari", 
        "givenName": "Saber", 
        "id": "sg:person.01355224754.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355224754.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "vit, Heinrich-Schr\u00f6der-Weg 1, 27283, Verden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zengting", 
        "id": "sg:person.01210673271.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210673271.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Animal Breeding and Genetics Group, Georg-August-Universit\u00e4t G\u00f6ttingen, Albrecht-Thaer-Weg 3, 37075, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simianer", 
        "givenName": "Henner", 
        "id": "sg:person.01221250726.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221250726.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13353-012-0114-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000192772", 
          "https://doi.org/10.1007/s13353-012-0114-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0103934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002816403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005941767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011521286", 
          "https://doi.org/10.1038/nrg2760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011521286", 
          "https://doi.org/10.1038/nrg2760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014033494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017509144", 
          "https://doi.org/10.1038/ng1770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017509144", 
          "https://doi.org/10.1038/ng1770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1751731107392628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028885396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029683381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-11-103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031668745", 
          "https://doi.org/10.1186/1471-2156-11-103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042684599", 
          "https://doi.org/10.1186/s12864-016-3175-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042684599", 
          "https://doi.org/10.1186/s12864-016-3175-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/502802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058783626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069978673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077537167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078165580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082664673", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "Genomic information is an important part of the routine evaluation of dairy cattle and provides the wide availability of animals genotyped using single nucleotide polymorphism (SNP) microarrays. We analyzed 2243 Polish and 2294 German Holstein-Friesian bulls genotyped using the Illumina BovineSNP50 BeadChip. For each bull, estimated breeding values (EBVs) calculated from national routine genetic evaluation were available for production traits and for somatic cell score (SCS). Separately for each population, we estimated SNP haplotypes, pairwise linkage disequilibrium (LD), and SNP effects. The SNP genetic covariance between both populations was estimated using a bivariate mixed model. The average LD was lower in the Polish than in the German population and, with increasing genomic distance, LD decays 1.7 times more rapidly in German than in Polish cattle. The comparison of SNP allele frequencies for base populations estimated separately using Polish and German data revealed a very good agreement. The comparison of genetic effects corresponding to various window lengths defined in bp emerged a systematic pattern: regardless of the length of the compared region, few significant differences were found for production traits, while many were observed for SCS. For each trait, the German population had much higher SNP variances than the Polish population and the genetic covariance estimates were all positive. Depending on traits' inheritance mode, the additive genetic variation can be stored in many genes following the infinitesimal model (like for SCS) or distributed between genes with high effects and the polygenic \"background\" (like for production traits). Accounting for those differences has implications on the prospective international genomic evaluation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13353-017-0409-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1114642", 
        "issn": [
          "1234-1983", 
          "2190-3883"
        ], 
        "name": "Journal of Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Assessing the degree of stratification between closely related Holstein-Friesian populations", 
    "pagination": "521-526", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a55b583140f17ab9f28cc13f62816bf6d33b82a07e16bdcf35c0948f5b36dfac"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28986737"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9514582"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13353-017-0409-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092114896"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13353-017-0409-2", 
      "https://app.dimensions.ai/details/publication/pub.1092114896"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13353-017-0409-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13353-017-0409-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13353-017-0409-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13353-017-0409-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13353-017-0409-2'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13353-017-0409-2 schema:about N31e2611da5024d8ea4a764d03e1d369b
2 N5a9dad895a5f46528e2a5b7ed756118e
3 N75081c78234942ca9a168496e42cac86
4 N81a0438b33d34a5686d054bd28aebc59
5 Nbd1589f605294d528d2d9b0e9c38f825
6 Nc517309167c044f18d9a6f447d5985b5
7 Nc7365f1f6f304170b504009ce3cfb521
8 Nd464e223dcf4499c8f0acff8f8933f7c
9 Nd8fc1f48235042319894a78686771a0e
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Nce546eec41ec41b088b4a4d421c7a205
13 schema:citation sg:pub.10.1007/s13353-012-0114-0
14 sg:pub.10.1038/ng1770
15 sg:pub.10.1038/nrg2760
16 sg:pub.10.1186/1471-2156-11-103
17 sg:pub.10.1186/s12864-016-3175-3
18 https://app.dimensions.ai/details/publication/pub.1082664673
19 https://doi.org/10.1017/s1751731107392628
20 https://doi.org/10.1086/502802
21 https://doi.org/10.1093/bioinformatics/bth457
22 https://doi.org/10.1101/gr.224202
23 https://doi.org/10.1371/journal.pgen.1004148
24 https://doi.org/10.1371/journal.pone.0103934
25 https://doi.org/10.2307/2533274
26 https://doi.org/10.3168/jds.2007-0403
27 https://doi.org/10.3168/jds.2008-1514
28 https://doi.org/10.3168/jds.2008-1646
29 https://doi.org/10.3168/jds.2009-2613
30 schema:datePublished 2017-11
31 schema:datePublishedReg 2017-11-01
32 schema:description Genomic information is an important part of the routine evaluation of dairy cattle and provides the wide availability of animals genotyped using single nucleotide polymorphism (SNP) microarrays. We analyzed 2243 Polish and 2294 German Holstein-Friesian bulls genotyped using the Illumina BovineSNP50 BeadChip. For each bull, estimated breeding values (EBVs) calculated from national routine genetic evaluation were available for production traits and for somatic cell score (SCS). Separately for each population, we estimated SNP haplotypes, pairwise linkage disequilibrium (LD), and SNP effects. The SNP genetic covariance between both populations was estimated using a bivariate mixed model. The average LD was lower in the Polish than in the German population and, with increasing genomic distance, LD decays 1.7 times more rapidly in German than in Polish cattle. The comparison of SNP allele frequencies for base populations estimated separately using Polish and German data revealed a very good agreement. The comparison of genetic effects corresponding to various window lengths defined in bp emerged a systematic pattern: regardless of the length of the compared region, few significant differences were found for production traits, while many were observed for SCS. For each trait, the German population had much higher SNP variances than the Polish population and the genetic covariance estimates were all positive. Depending on traits' inheritance mode, the additive genetic variation can be stored in many genes following the infinitesimal model (like for SCS) or distributed between genes with high effects and the polygenic "background" (like for production traits). Accounting for those differences has implications on the prospective international genomic evaluation.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N0d73277d16554eba9b43c2434a6ac480
37 N2262d44072fa44cdac406dc89c660bea
38 sg:journal.1114642
39 schema:name Assessing the degree of stratification between closely related Holstein-Friesian populations
40 schema:pagination 521-526
41 schema:productId N3ab44cd254c54bd08f57101d4bec6bb4
42 N3b55c10131004eec9a021d9f11b62a5f
43 N4e74f117ee044ff59c221099725e4152
44 Nb3e46660dd32479cbce3e216c8c8e5a0
45 Ncaaf210bd7404f13a9c53e535fb9a1b1
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092114896
47 https://doi.org/10.1007/s13353-017-0409-2
48 schema:sdDatePublished 2019-04-10T15:14
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nbb9e264fcaf746c7a91768518b481fb5
51 schema:url https://link.springer.com/10.1007%2Fs13353-017-0409-2
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0d73277d16554eba9b43c2434a6ac480 schema:volumeNumber 58
56 rdf:type schema:PublicationVolume
57 N2262d44072fa44cdac406dc89c660bea schema:issueNumber 4
58 rdf:type schema:PublicationIssue
59 N31e2611da5024d8ea4a764d03e1d369b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Haplotypes
61 rdf:type schema:DefinedTerm
62 N3ab44cd254c54bd08f57101d4bec6bb4 schema:name doi
63 schema:value 10.1007/s13353-017-0409-2
64 rdf:type schema:PropertyValue
65 N3b55c10131004eec9a021d9f11b62a5f schema:name nlm_unique_id
66 schema:value 9514582
67 rdf:type schema:PropertyValue
68 N4e74f117ee044ff59c221099725e4152 schema:name readcube_id
69 schema:value a55b583140f17ab9f28cc13f62816bf6d33b82a07e16bdcf35c0948f5b36dfac
70 rdf:type schema:PropertyValue
71 N5a9dad895a5f46528e2a5b7ed756118e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Breeding
73 rdf:type schema:DefinedTerm
74 N75081c78234942ca9a168496e42cac86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Polymorphism, Single Nucleotide
76 rdf:type schema:DefinedTerm
77 N81a0438b33d34a5686d054bd28aebc59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Animals
79 rdf:type schema:DefinedTerm
80 Nacfb8547e43d4970b8321a3f69815a90 rdf:first sg:person.01210673271.77
81 rdf:rest Nf14bf0842f43416c8faa8a5778eeed27
82 Nb3e46660dd32479cbce3e216c8c8e5a0 schema:name dimensions_id
83 schema:value pub.1092114896
84 rdf:type schema:PropertyValue
85 Nbb9e264fcaf746c7a91768518b481fb5 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nbd1589f605294d528d2d9b0e9c38f825 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Gene Frequency
89 rdf:type schema:DefinedTerm
90 Nc517309167c044f18d9a6f447d5985b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Cattle
92 rdf:type schema:DefinedTerm
93 Nc7365f1f6f304170b504009ce3cfb521 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Linkage Disequilibrium
95 rdf:type schema:DefinedTerm
96 Ncaaf210bd7404f13a9c53e535fb9a1b1 schema:name pubmed_id
97 schema:value 28986737
98 rdf:type schema:PropertyValue
99 Nce546eec41ec41b088b4a4d421c7a205 rdf:first sg:person.0623327551.71
100 rdf:rest Nd3db8a6f408b45e2b64810925c889a31
101 Nd3db8a6f408b45e2b64810925c889a31 rdf:first sg:person.0750535434.41
102 rdf:rest Ndb7126c3f1154c7b86a96928b6d429e9
103 Nd464e223dcf4499c8f0acff8f8933f7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genome
105 rdf:type schema:DefinedTerm
106 Nd8fc1f48235042319894a78686771a0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Phenotype
108 rdf:type schema:DefinedTerm
109 Ndb7126c3f1154c7b86a96928b6d429e9 rdf:first sg:person.01355224754.52
110 rdf:rest Nacfb8547e43d4970b8321a3f69815a90
111 Nf14bf0842f43416c8faa8a5778eeed27 rdf:first sg:person.01221250726.49
112 rdf:rest rdf:nil
113 Nf475c45442314bb9a6c17635f855ae61 schema:name vit, Heinrich-Schröder-Weg 1, 27283, Verden, Germany
114 rdf:type schema:Organization
115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
116 schema:name Biological Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
119 schema:name Genetics
120 rdf:type schema:DefinedTerm
121 sg:journal.1114642 schema:issn 1234-1983
122 2190-3883
123 schema:name Journal of Applied Genetics
124 rdf:type schema:Periodical
125 sg:person.01210673271.77 schema:affiliation Nf475c45442314bb9a6c17635f855ae61
126 schema:familyName Liu
127 schema:givenName Zengting
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210673271.77
129 rdf:type schema:Person
130 sg:person.01221250726.49 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
131 schema:familyName Simianer
132 schema:givenName Henner
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221250726.49
134 rdf:type schema:Person
135 sg:person.01355224754.52 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
136 schema:familyName Qanbari
137 schema:givenName Saber
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355224754.52
139 rdf:type schema:Person
140 sg:person.0623327551.71 schema:affiliation https://www.grid.ac/institutes/grid.419741.e
141 schema:familyName Szyda
142 schema:givenName Joanna
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623327551.71
144 rdf:type schema:Person
145 sg:person.0750535434.41 schema:affiliation https://www.grid.ac/institutes/grid.419741.e
146 schema:familyName Suchocki
147 schema:givenName Tomasz
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750535434.41
149 rdf:type schema:Person
150 sg:pub.10.1007/s13353-012-0114-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000192772
151 https://doi.org/10.1007/s13353-012-0114-0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ng1770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017509144
154 https://doi.org/10.1038/ng1770
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nrg2760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011521286
157 https://doi.org/10.1038/nrg2760
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1471-2156-11-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031668745
160 https://doi.org/10.1186/1471-2156-11-103
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/s12864-016-3175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042684599
163 https://doi.org/10.1186/s12864-016-3175-3
164 rdf:type schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1082664673 schema:CreativeWork
166 https://doi.org/10.1017/s1751731107392628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649334
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1086/502802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783626
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1101/gr.224202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005941767
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1371/journal.pgen.1004148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014033494
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1371/journal.pone.0103934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002816403
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2307/2533274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978673
179 rdf:type schema:CreativeWork
180 https://doi.org/10.3168/jds.2007-0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077537167
181 rdf:type schema:CreativeWork
182 https://doi.org/10.3168/jds.2008-1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885396
183 rdf:type schema:CreativeWork
184 https://doi.org/10.3168/jds.2008-1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683381
185 rdf:type schema:CreativeWork
186 https://doi.org/10.3168/jds.2009-2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078165580
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.419741.e schema:alternateName National Research Institute of Animal Production
189 schema:name Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wrocław, Poland
190 National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
193 schema:name Animal Breeding and Genetics Group, Georg-August-Universität Göttingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...