Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02

AUTHORS

Dao-Yi Gong, Dong Guo, Sang Li, Seong-Joong Kim

ABSTRACT

This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean. More... »

PAGES

94-106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13351-017-6175-6

DOI

http://dx.doi.org/10.1007/s13351-017-6175-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084688041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Dao-Yi", 
        "id": "sg:person.013351637312.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351637312.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Change Research Center, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Climate Change Research Center, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Dong", 
        "id": "sg:person.014763271350.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763271350.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Sang", 
        "id": "sg:person.013377670111.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377670111.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Polar Climate Change, Korea Polar Research Institute, 21990, Incheon, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.410913.e", 
          "name": [
            "Division of Polar Climate Change, Korea Polar Research Institute, 21990, Incheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seong-Joong", 
        "id": "sg:person.0734326544.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734326544.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-016-3216-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038614941", 
          "https://doi.org/10.1007/s00382-016-3216-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1349-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048712744", 
          "https://doi.org/10.1007/s00382-012-1349-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1765-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039888426", 
          "https://doi.org/10.1007/s00382-013-1765-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0272-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031177934", 
          "https://doi.org/10.1007/s00382-007-0272-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1681-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030665660", 
          "https://doi.org/10.1007/s00382-013-1681-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2338-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027481367", 
          "https://doi.org/10.1007/s00382-014-2338-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037341604", 
          "https://doi.org/10.1007/s00382-011-1041-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2379-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042088725", 
          "https://doi.org/10.1007/s00382-014-2379-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0197-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051948961", 
          "https://doi.org/10.1007/s00382-006-0197-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046734048", 
          "https://doi.org/10.1038/ncomms8154"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979\u20132014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5\u00b0S\u20135\u00b0N and descending over 15\u00b0\u201325\u00b0N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13351-017-6175-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136449", 
        "issn": [
          "2095-6037", 
          "2198-0934"
        ], 
        "name": "Journal of Meteorological Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "ocean heat content", 
      "tropical Indian Ocean", 
      "AO/NAO", 
      "upper ocean heat content", 
      "Indian Ocean", 
      "Rossby waves", 
      "heat content", 
      "western Indian Ocean", 
      "monsoonal circulation", 
      "Arctic Oscillation/North Atlantic Oscillation", 
      "central tropical Indian Ocean", 
      "western tropical Indian Ocean", 
      "summer monsoon circulation", 
      "heat content anomalies", 
      "upper ocean warming", 
      "anomalous meridional circulation", 
      "Indian Ocean north", 
      "oceanic Rossby waves", 
      "summer atmospheric circulation", 
      "summer monsoonal circulation", 
      "ocean circulation model", 
      "North Atlantic Oscillation", 
      "upper-ocean heating", 
      "northwestern Indian Ocean", 
      "singular decomposition analysis", 
      "monsoon circulation", 
      "atmospheric teleconnections", 
      "upper ocean", 
      "Ocean north", 
      "ocean heating", 
      "atmospheric circulation", 
      "Atlantic Oscillation", 
      "boreal winter", 
      "squared covariance", 
      "meridional advection", 
      "circulation model", 
      "North Atlantic", 
      "geopotential height", 
      "NAO pattern", 
      "ocean warming", 
      "Northern Hemisphere", 
      "meridional circulation", 
      "Ocean", 
      "NAO", 
      "circulation", 
      "equator", 
      "summer", 
      "waves", 
      "possible influence", 
      "teleconnections", 
      "Atlantic", 
      "advection", 
      "warming", 
      "north", 
      "wind", 
      "winter", 
      "anomalies", 
      "hemisphere", 
      "convection", 
      "evaporation", 
      "oscillations", 
      "content", 
      "drivers", 
      "height", 
      "heating", 
      "key role", 
      "patterns", 
      "covariance", 
      "motion", 
      "decomposition analysis", 
      "influence", 
      "model", 
      "analysis", 
      "results", 
      "role", 
      "paper"
    ], 
    "name": "Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean", 
    "pagination": "94-106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084688041"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13351-017-6175-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13351-017-6175-6", 
      "https://app.dimensions.ai/details/publication/pub.1084688041"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_749.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13351-017-6175-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6175-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6175-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6175-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6175-6'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      111 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13351-017-6175-6 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Ne6f7e85a217746f3966661d18002a601
4 schema:citation sg:pub.10.1007/s00382-006-0197-6
5 sg:pub.10.1007/s00382-007-0272-7
6 sg:pub.10.1007/s00382-011-1041-1
7 sg:pub.10.1007/s00382-012-1349-5
8 sg:pub.10.1007/s00382-013-1681-4
9 sg:pub.10.1007/s00382-013-1765-1
10 sg:pub.10.1007/s00382-014-2338-7
11 sg:pub.10.1007/s00382-014-2379-y
12 sg:pub.10.1007/s00382-016-3216-2
13 sg:pub.10.1038/ncomms8154
14 schema:datePublished 2017-02
15 schema:datePublishedReg 2017-02-01
16 schema:description This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N5ee0083854fa47d5ad26b32f4a631a73
20 N94215516f64b482aa8da25bfe8b152ae
21 sg:journal.1136449
22 schema:keywords AO/NAO
23 Arctic Oscillation/North Atlantic Oscillation
24 Atlantic
25 Atlantic Oscillation
26 Indian Ocean
27 Indian Ocean north
28 NAO
29 NAO pattern
30 North Atlantic
31 North Atlantic Oscillation
32 Northern Hemisphere
33 Ocean
34 Ocean north
35 Rossby waves
36 advection
37 analysis
38 anomalies
39 anomalous meridional circulation
40 atmospheric circulation
41 atmospheric teleconnections
42 boreal winter
43 central tropical Indian Ocean
44 circulation
45 circulation model
46 content
47 convection
48 covariance
49 decomposition analysis
50 drivers
51 equator
52 evaporation
53 geopotential height
54 heat content
55 heat content anomalies
56 heating
57 height
58 hemisphere
59 influence
60 key role
61 meridional advection
62 meridional circulation
63 model
64 monsoon circulation
65 monsoonal circulation
66 motion
67 north
68 northwestern Indian Ocean
69 ocean circulation model
70 ocean heat content
71 ocean heating
72 ocean warming
73 oceanic Rossby waves
74 oscillations
75 paper
76 patterns
77 possible influence
78 results
79 role
80 singular decomposition analysis
81 squared covariance
82 summer
83 summer atmospheric circulation
84 summer monsoon circulation
85 summer monsoonal circulation
86 teleconnections
87 tropical Indian Ocean
88 upper ocean
89 upper ocean heat content
90 upper ocean warming
91 upper-ocean heating
92 warming
93 waves
94 western Indian Ocean
95 western tropical Indian Ocean
96 wind
97 winter
98 schema:name Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean
99 schema:pagination 94-106
100 schema:productId N0b656a0940e34aaf9b39418b8614ff4c
101 N6c5bcd638d134e15bf53a9f8ed4353db
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084688041
103 https://doi.org/10.1007/s13351-017-6175-6
104 schema:sdDatePublished 2022-12-01T06:36
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Nb443dd6100974ee48edcdb751dce564e
107 schema:url https://doi.org/10.1007/s13351-017-6175-6
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N0b656a0940e34aaf9b39418b8614ff4c schema:name dimensions_id
112 schema:value pub.1084688041
113 rdf:type schema:PropertyValue
114 N542b1d6aba3f4dcf8c6842b8ed5e479d rdf:first sg:person.013377670111.03
115 rdf:rest N9d6d356064e04d7992349865520bf99a
116 N5ee0083854fa47d5ad26b32f4a631a73 schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 N6c5bcd638d134e15bf53a9f8ed4353db schema:name doi
119 schema:value 10.1007/s13351-017-6175-6
120 rdf:type schema:PropertyValue
121 N94215516f64b482aa8da25bfe8b152ae schema:volumeNumber 31
122 rdf:type schema:PublicationVolume
123 N9d6d356064e04d7992349865520bf99a rdf:first sg:person.0734326544.90
124 rdf:rest rdf:nil
125 Nb443dd6100974ee48edcdb751dce564e schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Ne6f7e85a217746f3966661d18002a601 rdf:first sg:person.013351637312.32
128 rdf:rest Neee5fde1676a49d6a6c54f9b5a1c73c9
129 Neee5fde1676a49d6a6c54f9b5a1c73c9 rdf:first sg:person.014763271350.71
130 rdf:rest N542b1d6aba3f4dcf8c6842b8ed5e479d
131 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
132 schema:name Earth Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
135 schema:name Oceanography
136 rdf:type schema:DefinedTerm
137 sg:journal.1136449 schema:issn 2095-6037
138 2198-0934
139 schema:name Journal of Meteorological Research
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.013351637312.32 schema:affiliation grid-institutes:grid.20513.35
143 schema:familyName Gong
144 schema:givenName Dao-Yi
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351637312.32
146 rdf:type schema:Person
147 sg:person.013377670111.03 schema:affiliation grid-institutes:grid.20513.35
148 schema:familyName Li
149 schema:givenName Sang
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377670111.03
151 rdf:type schema:Person
152 sg:person.014763271350.71 schema:affiliation grid-institutes:grid.9227.e
153 schema:familyName Guo
154 schema:givenName Dong
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763271350.71
156 rdf:type schema:Person
157 sg:person.0734326544.90 schema:affiliation grid-institutes:grid.410913.e
158 schema:familyName Kim
159 schema:givenName Seong-Joong
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734326544.90
161 rdf:type schema:Person
162 sg:pub.10.1007/s00382-006-0197-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051948961
163 https://doi.org/10.1007/s00382-006-0197-6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00382-007-0272-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031177934
166 https://doi.org/10.1007/s00382-007-0272-7
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00382-011-1041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037341604
169 https://doi.org/10.1007/s00382-011-1041-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00382-012-1349-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048712744
172 https://doi.org/10.1007/s00382-012-1349-5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00382-013-1681-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030665660
175 https://doi.org/10.1007/s00382-013-1681-4
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00382-013-1765-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039888426
178 https://doi.org/10.1007/s00382-013-1765-1
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00382-014-2338-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027481367
181 https://doi.org/10.1007/s00382-014-2338-7
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00382-014-2379-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042088725
184 https://doi.org/10.1007/s00382-014-2379-y
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00382-016-3216-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038614941
187 https://doi.org/10.1007/s00382-016-3216-2
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ncomms8154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046734048
190 https://doi.org/10.1038/ncomms8154
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.20513.35 schema:alternateName State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 100875, Beijing, China
193 schema:name State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 100875, Beijing, China
194 rdf:type schema:Organization
195 grid-institutes:grid.410913.e schema:alternateName Division of Polar Climate Change, Korea Polar Research Institute, 21990, Incheon, South Korea
196 schema:name Division of Polar Climate Change, Korea Polar Research Institute, 21990, Incheon, South Korea
197 rdf:type schema:Organization
198 grid-institutes:grid.9227.e schema:alternateName Climate Change Research Center, Chinese Academy of Sciences, 100029, Beijing, China
199 schema:name Climate Change Research Center, Chinese Academy of Sciences, 100029, Beijing, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...