Propagation and mechanisms of the quasi-biweekly oscillation over the Asian summer monsoon region View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04

AUTHORS

Meirong Wang, Jun Wang, Anmin Duan

ABSTRACT

The propagation and underlying mechanisms of the boreal summer quasi-biweekly oscillation (QBWO) over the entire Asian monsoon region are investigated, based on ECMWF Interim reanalysis (ERA-Interim) data, GPCP precipitation data, and an atmospheric general circulation model (AGCM). Statistical analyses indicate that the QBWO over the Asian monsoon region derives its main origin from the equatorial western Pacific and moves northwestward to the Bay of Bengal and northern India, and then northward to the Tibetan Plateau (TP) area, with a baroclinic vertical structure. Northward propagation of the QBWO is promoted by three main mechanisms: barotropic vorticity, boundary moisture advection, and surface sensible heating (SSH). It is dominated by the barotropic vorticity effect when the QBWO signals are situated to the south of 20°N. During the propagation taking place farther north toward the TP, the boundary moisture advection and SSH are the leading mechanisms. We use an AGCM to verify the importance of SSH on the northward propagation of the QBWO. Numerical simulations confirm the diagnostic conclusion that the equatorial western Pacific is the source of the QBWO. Importantly, the model can accurately simulate the propagation pathway of the QBWO signals over the Asian monsoon region. Simultaneously, sensitivity experiments demonstrate that the SSH over northern India and the southern slope of the TP greatly contributes to the northward propagation of the QBWO as far as the TP area. More... »

PAGES

321-335

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13351-017-6131-5

DOI

http://dx.doi.org/10.1007/s13351-017-6131-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085175156


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411307.0", 
          "name": [
            "Center of Data Assimilation for Research and Application/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, 210044, Nanjing, China", 
            "Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Meirong", 
        "id": "sg:person.012317215777.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317215777.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "International Institute for Earth System Science, Nanjing University, 210023, Nanjing, China", 
            "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jun", 
        "id": "sg:person.07721576173.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721576173.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Anmin", 
        "id": "sg:person.010235776237.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235776237.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00376-012-2113-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024737348", 
          "https://doi.org/10.1007/s00376-012-2113-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820100161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039851558", 
          "https://doi.org/10.1007/s003820100161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1425-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038351364", 
          "https://doi.org/10.1007/s00382-012-1425-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1728-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043423241", 
          "https://doi.org/10.1007/s00382-013-1728-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-997-0053-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026297265", 
          "https://doi.org/10.1007/s00376-997-0053-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02678744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043966107", 
          "https://doi.org/10.1007/bf02678744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0164-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025688718", 
          "https://doi.org/10.1007/s00382-006-0164-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "The propagation and underlying mechanisms of the boreal summer quasi-biweekly oscillation (QBWO) over the entire Asian monsoon region are investigated, based on ECMWF Interim reanalysis (ERA-Interim) data, GPCP precipitation data, and an atmospheric general circulation model (AGCM). Statistical analyses indicate that the QBWO over the Asian monsoon region derives its main origin from the equatorial western Pacific and moves northwestward to the Bay of Bengal and northern India, and then northward to the Tibetan Plateau (TP) area, with a baroclinic vertical structure. Northward propagation of the QBWO is promoted by three main mechanisms: barotropic vorticity, boundary moisture advection, and surface sensible heating (SSH). It is dominated by the barotropic vorticity effect when the QBWO signals are situated to the south of 20\u00b0N. During the propagation taking place farther north toward the TP, the boundary moisture advection and SSH are the leading mechanisms. We use an AGCM to verify the importance of SSH on the northward propagation of the QBWO. Numerical simulations confirm the diagnostic conclusion that the equatorial western Pacific is the source of the QBWO. Importantly, the model can accurately simulate the propagation pathway of the QBWO signals over the Asian monsoon region. Simultaneously, sensitivity experiments demonstrate that the SSH over northern India and the southern slope of the TP greatly contributes to the northward propagation of the QBWO as far as the TP area.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13351-017-6131-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136449", 
        "issn": [
          "2095-6037", 
          "2198-0934"
        ], 
        "name": "Journal of Meteorological Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "atmospheric general circulation model", 
      "quasi-biweekly oscillation", 
      "surface sensible heating", 
      "Asian monsoon region", 
      "equatorial western Pacific", 
      "monsoon region", 
      "northward propagation", 
      "moisture advection", 
      "western Pacific", 
      "entire Asian monsoon region", 
      "Asian summer monsoon region", 
      "ECMWF interim reanalysis data", 
      "GPCP precipitation data", 
      "summer monsoon region", 
      "Interim reanalysis data", 
      "general circulation model", 
      "Bay of Bengal", 
      "baroclinic vertical structure", 
      "northern India", 
      "Tibetan Plateau area", 
      "reanalysis data", 
      "circulation model", 
      "sensitivity experiments", 
      "precipitation data", 
      "barotropic vorticity", 
      "sensible heating", 
      "southern slope", 
      "TP area", 
      "vertical structure", 
      "plateau area", 
      "Pacific", 
      "advection", 
      "propagation pathways", 
      "vorticity effects", 
      "main origin", 
      "oscillations", 
      "region", 
      "Bay", 
      "south", 
      "India", 
      "Bengal", 
      "propagation", 
      "area", 
      "main mechanism", 
      "TP", 
      "vorticity", 
      "slope", 
      "numerical simulations", 
      "origin", 
      "statistical analysis", 
      "data", 
      "source", 
      "model", 
      "heating", 
      "simulations", 
      "place", 
      "signals", 
      "importance", 
      "mechanism", 
      "analysis", 
      "structure", 
      "experiments", 
      "effect", 
      "pathway", 
      "conclusion", 
      "diagnostic conclusions"
    ], 
    "name": "Propagation and mechanisms of the quasi-biweekly oscillation over the Asian summer monsoon region", 
    "pagination": "321-335", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085175156"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13351-017-6131-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13351-017-6131-5", 
      "https://app.dimensions.ai/details/publication/pub.1085175156"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13351-017-6131-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6131-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6131-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6131-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6131-5'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      98 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13351-017-6131-5 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Ne6f3b9c7b8dd4da880050c32c56cd1f4
4 schema:citation sg:pub.10.1007/bf02678744
5 sg:pub.10.1007/s00376-012-2113-9
6 sg:pub.10.1007/s00376-997-0053-6
7 sg:pub.10.1007/s00382-006-0164-2
8 sg:pub.10.1007/s00382-012-1425-x
9 sg:pub.10.1007/s00382-013-1728-6
10 sg:pub.10.1007/s003820100161
11 schema:datePublished 2017-04
12 schema:datePublishedReg 2017-04-01
13 schema:description The propagation and underlying mechanisms of the boreal summer quasi-biweekly oscillation (QBWO) over the entire Asian monsoon region are investigated, based on ECMWF Interim reanalysis (ERA-Interim) data, GPCP precipitation data, and an atmospheric general circulation model (AGCM). Statistical analyses indicate that the QBWO over the Asian monsoon region derives its main origin from the equatorial western Pacific and moves northwestward to the Bay of Bengal and northern India, and then northward to the Tibetan Plateau (TP) area, with a baroclinic vertical structure. Northward propagation of the QBWO is promoted by three main mechanisms: barotropic vorticity, boundary moisture advection, and surface sensible heating (SSH). It is dominated by the barotropic vorticity effect when the QBWO signals are situated to the south of 20°N. During the propagation taking place farther north toward the TP, the boundary moisture advection and SSH are the leading mechanisms. We use an AGCM to verify the importance of SSH on the northward propagation of the QBWO. Numerical simulations confirm the diagnostic conclusion that the equatorial western Pacific is the source of the QBWO. Importantly, the model can accurately simulate the propagation pathway of the QBWO signals over the Asian monsoon region. Simultaneously, sensitivity experiments demonstrate that the SSH over northern India and the southern slope of the TP greatly contributes to the northward propagation of the QBWO as far as the TP area.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N3b8835b4721f49bdae7febe85cbbcb27
17 N50d21f1322844d418d6b3b522a7f9188
18 sg:journal.1136449
19 schema:keywords Asian monsoon region
20 Asian summer monsoon region
21 Bay
22 Bay of Bengal
23 Bengal
24 ECMWF interim reanalysis data
25 GPCP precipitation data
26 India
27 Interim reanalysis data
28 Pacific
29 TP
30 TP area
31 Tibetan Plateau area
32 advection
33 analysis
34 area
35 atmospheric general circulation model
36 baroclinic vertical structure
37 barotropic vorticity
38 circulation model
39 conclusion
40 data
41 diagnostic conclusions
42 effect
43 entire Asian monsoon region
44 equatorial western Pacific
45 experiments
46 general circulation model
47 heating
48 importance
49 main mechanism
50 main origin
51 mechanism
52 model
53 moisture advection
54 monsoon region
55 northern India
56 northward propagation
57 numerical simulations
58 origin
59 oscillations
60 pathway
61 place
62 plateau area
63 precipitation data
64 propagation
65 propagation pathways
66 quasi-biweekly oscillation
67 reanalysis data
68 region
69 sensible heating
70 sensitivity experiments
71 signals
72 simulations
73 slope
74 source
75 south
76 southern slope
77 statistical analysis
78 structure
79 summer monsoon region
80 surface sensible heating
81 vertical structure
82 vorticity
83 vorticity effects
84 western Pacific
85 schema:name Propagation and mechanisms of the quasi-biweekly oscillation over the Asian summer monsoon region
86 schema:pagination 321-335
87 schema:productId N17bacc514b9749948d7d6f61723feaf0
88 N5ec68e18f6e14bc68a8873689f3ce3e2
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085175156
90 https://doi.org/10.1007/s13351-017-6131-5
91 schema:sdDatePublished 2022-08-04T17:05
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N1bf39518d5674b3690aac4e1446b3c98
94 schema:url https://doi.org/10.1007/s13351-017-6131-5
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N17bacc514b9749948d7d6f61723feaf0 schema:name doi
99 schema:value 10.1007/s13351-017-6131-5
100 rdf:type schema:PropertyValue
101 N1bf39518d5674b3690aac4e1446b3c98 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N3b8835b4721f49bdae7febe85cbbcb27 schema:volumeNumber 31
104 rdf:type schema:PublicationVolume
105 N50d21f1322844d418d6b3b522a7f9188 schema:issueNumber 2
106 rdf:type schema:PublicationIssue
107 N51a0bc05d67b4d4ba21d3f8054652b63 rdf:first sg:person.010235776237.95
108 rdf:rest rdf:nil
109 N5ec68e18f6e14bc68a8873689f3ce3e2 schema:name dimensions_id
110 schema:value pub.1085175156
111 rdf:type schema:PropertyValue
112 N9ed5ab61ed5d45f188572a00e7731ede rdf:first sg:person.07721576173.28
113 rdf:rest N51a0bc05d67b4d4ba21d3f8054652b63
114 Ne6f3b9c7b8dd4da880050c32c56cd1f4 rdf:first sg:person.012317215777.79
115 rdf:rest N9ed5ab61ed5d45f188572a00e7731ede
116 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
117 schema:name Earth Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
120 schema:name Atmospheric Sciences
121 rdf:type schema:DefinedTerm
122 sg:journal.1136449 schema:issn 2095-6037
123 2198-0934
124 schema:name Journal of Meteorological Research
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.010235776237.95 schema:affiliation grid-institutes:grid.424023.3
128 schema:familyName Duan
129 schema:givenName Anmin
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235776237.95
131 rdf:type schema:Person
132 sg:person.012317215777.79 schema:affiliation grid-institutes:grid.411307.0
133 schema:familyName Wang
134 schema:givenName Meirong
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317215777.79
136 rdf:type schema:Person
137 sg:person.07721576173.28 schema:affiliation grid-institutes:grid.424023.3
138 schema:familyName Wang
139 schema:givenName Jun
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721576173.28
141 rdf:type schema:Person
142 sg:pub.10.1007/bf02678744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043966107
143 https://doi.org/10.1007/bf02678744
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00376-012-2113-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024737348
146 https://doi.org/10.1007/s00376-012-2113-9
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00376-997-0053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026297265
149 https://doi.org/10.1007/s00376-997-0053-6
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00382-006-0164-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025688718
152 https://doi.org/10.1007/s00382-006-0164-2
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00382-012-1425-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038351364
155 https://doi.org/10.1007/s00382-012-1425-x
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00382-013-1728-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043423241
158 https://doi.org/10.1007/s00382-013-1728-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s003820100161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039851558
161 https://doi.org/10.1007/s003820100161
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.411307.0 schema:alternateName Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China
164 schema:name Center of Data Assimilation for Research and Application/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, 210044, Nanjing, China
165 Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China
166 rdf:type schema:Organization
167 grid-institutes:grid.424023.3 schema:alternateName State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
168 schema:name International Institute for Earth System Science, Nanjing University, 210023, Nanjing, China
169 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...