Error sensitivity analysis in 10–30-day extended range forecasting by using a nonlinear cross-prediction error model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Zhiye Xia, Lisheng Xu, Hongbin Chen, Yongqian Wang, Jinbao Liu, Wenlan Feng

ABSTRACT

Extended range forecasting of 10–30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10–30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10–6–10–2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10–1–2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10–2–10–1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect (m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water. More... »

PAGES

567-575

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13351-017-6098-2

DOI

http://dx.doi.org/10.1007/s13351-017-6098-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090280758


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411307.0", 
          "name": [
            "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China", 
            "Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Zhiye", 
        "id": "sg:person.011246120473.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246120473.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411307.0", 
          "name": [
            "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lisheng", 
        "id": "sg:person.015611105677.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611105677.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hongbin", 
        "id": "sg:person.07476165275.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476165275.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411307.0", 
          "name": [
            "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yongqian", 
        "id": "sg:person.010730451257.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730451257.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411307.0", 
          "name": [
            "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jinbao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411307.0", 
          "name": [
            "College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Wenlan", 
        "id": "sg:person.016623726603.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623726603.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-014-2291-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030779049", 
          "https://doi.org/10.1007/s00382-014-2291-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-015-1610-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033532491", 
          "https://doi.org/10.1007/s11069-015-1610-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-015-4252-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039184686", 
          "https://doi.org/10.1007/s00376-015-4252-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2461-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006286421", 
          "https://doi.org/10.1007/s00382-014-2461-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-012-4513-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014818138", 
          "https://doi.org/10.1007/s11430-012-4513-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0091924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049441366", 
          "https://doi.org/10.1007/bfb0091924"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Extended range forecasting of 10\u201330 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10\u201330-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10\u20136\u201310\u20132), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10\u20131\u20132 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10\u20132\u201310\u20131, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect (m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13351-017-6098-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136449", 
        "issn": [
          "2095-6037", 
          "2198-0934"
        ], 
        "name": "Journal of Meteorological Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "model parameter errors", 
      "extended range forecasting", 
      "chaotic systems", 
      "random errors", 
      "initial errors", 
      "parameter errors", 
      "range forecasting", 
      "nonlinear time series", 
      "error model", 
      "phase space", 
      "embedding dimension", 
      "phase points", 
      "dynamic features", 
      "error sensitivity analysis", 
      "time series", 
      "error", 
      "geopotential height", 
      "attractors", 
      "sensitivity analysis", 
      "climate predictions", 
      "forecasting", 
      "model", 
      "prediction indicators", 
      "prediction", 
      "associated sensitivity", 
      "mutual effects", 
      "space", 
      "terms", 
      "incomplete structure", 
      "uncertainty", 
      "system", 
      "dimensions", 
      "considerable uncertainty", 
      "point", 
      "temperature", 
      "timescales", 
      "stability", 
      "precipitable water", 
      "features", 
      "structure", 
      "height", 
      "ratio", 
      "cases", 
      "meteorological events", 
      "results", 
      "range", 
      "effect", 
      "validity period", 
      "variation", 
      "analysis", 
      "process", 
      "series", 
      "decision-making process", 
      "significant role", 
      "sensitivity", 
      "influence", 
      "hurricanes", 
      "minor variations", 
      "attention", 
      "mitigation", 
      "indicators", 
      "events", 
      "rain", 
      "heavy rain", 
      "interacts", 
      "period", 
      "water", 
      "role", 
      "minimal effect", 
      "scarcity", 
      "prevention", 
      "days", 
      "method", 
      "terms of timescale"
    ], 
    "name": "Error sensitivity analysis in 10\u201330-day extended range forecasting by using a nonlinear cross-prediction error model", 
    "pagination": "567-575", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090280758"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13351-017-6098-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13351-017-6098-2", 
      "https://app.dimensions.ai/details/publication/pub.1090280758"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_726.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13351-017-6098-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6098-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6098-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6098-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13351-017-6098-2'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      105 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13351-017-6098-2 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N5db08a87b78340b395a06af5382c5b56
4 schema:citation sg:pub.10.1007/bfb0091924
5 sg:pub.10.1007/s00376-015-4252-2
6 sg:pub.10.1007/s00382-014-2291-5
7 sg:pub.10.1007/s00382-014-2461-5
8 sg:pub.10.1007/s11069-015-1610-4
9 sg:pub.10.1007/s11430-012-4513-1
10 schema:datePublished 2017-06
11 schema:datePublishedReg 2017-06-01
12 schema:description Extended range forecasting of 10–30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10–30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10–6–10–2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10–1–2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10–2–10–1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect (m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N47d9729ecfce45af9e7d2e0ac13cf6f2
16 Ne52ecd405fc4456aa7e16feaca453abd
17 sg:journal.1136449
18 schema:keywords analysis
19 associated sensitivity
20 attention
21 attractors
22 cases
23 chaotic systems
24 climate predictions
25 considerable uncertainty
26 days
27 decision-making process
28 dimensions
29 dynamic features
30 effect
31 embedding dimension
32 error
33 error model
34 error sensitivity analysis
35 events
36 extended range forecasting
37 features
38 forecasting
39 geopotential height
40 heavy rain
41 height
42 hurricanes
43 incomplete structure
44 indicators
45 influence
46 initial errors
47 interacts
48 meteorological events
49 method
50 minimal effect
51 minor variations
52 mitigation
53 model
54 model parameter errors
55 mutual effects
56 nonlinear time series
57 parameter errors
58 period
59 phase points
60 phase space
61 point
62 precipitable water
63 prediction
64 prediction indicators
65 prevention
66 process
67 rain
68 random errors
69 range
70 range forecasting
71 ratio
72 results
73 role
74 scarcity
75 sensitivity
76 sensitivity analysis
77 series
78 significant role
79 space
80 stability
81 structure
82 system
83 temperature
84 terms
85 terms of timescale
86 time series
87 timescales
88 uncertainty
89 validity period
90 variation
91 water
92 schema:name Error sensitivity analysis in 10–30-day extended range forecasting by using a nonlinear cross-prediction error model
93 schema:pagination 567-575
94 schema:productId N0e4fb1c88150487cb8f06a0ab77bb577
95 Ncc6d94e3f6f8426d8efc7957375b24f8
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090280758
97 https://doi.org/10.1007/s13351-017-6098-2
98 schema:sdDatePublished 2022-11-24T21:01
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N2fc59d9e8fd542548014818b8cafc51d
101 schema:url https://doi.org/10.1007/s13351-017-6098-2
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N0e4fb1c88150487cb8f06a0ab77bb577 schema:name doi
106 schema:value 10.1007/s13351-017-6098-2
107 rdf:type schema:PropertyValue
108 N2fc59d9e8fd542548014818b8cafc51d schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N47d9729ecfce45af9e7d2e0ac13cf6f2 schema:volumeNumber 31
111 rdf:type schema:PublicationVolume
112 N5db08a87b78340b395a06af5382c5b56 rdf:first sg:person.011246120473.51
113 rdf:rest Nca26ca26445b4e249eea097fd9d3a5e2
114 N6e254a4c3adb486bbfc372f6d4e73f28 rdf:first sg:person.07476165275.31
115 rdf:rest Nc7ad26480eb54d2e84eddca5e66082fb
116 N70b328003a284afc9d5b3f4c73cf1d4b rdf:first sg:person.016623726603.92
117 rdf:rest rdf:nil
118 N93b50d16d4144887b28c87698b7e2bc9 rdf:first Nf48936adc14247fb90fa0d5a112bf618
119 rdf:rest N70b328003a284afc9d5b3f4c73cf1d4b
120 Nc7ad26480eb54d2e84eddca5e66082fb rdf:first sg:person.010730451257.54
121 rdf:rest N93b50d16d4144887b28c87698b7e2bc9
122 Nca26ca26445b4e249eea097fd9d3a5e2 rdf:first sg:person.015611105677.75
123 rdf:rest N6e254a4c3adb486bbfc372f6d4e73f28
124 Ncc6d94e3f6f8426d8efc7957375b24f8 schema:name dimensions_id
125 schema:value pub.1090280758
126 rdf:type schema:PropertyValue
127 Ne52ecd405fc4456aa7e16feaca453abd schema:issueNumber 3
128 rdf:type schema:PublicationIssue
129 Nf48936adc14247fb90fa0d5a112bf618 schema:affiliation grid-institutes:grid.411307.0
130 schema:familyName Liu
131 schema:givenName Jinbao
132 rdf:type schema:Person
133 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
134 schema:name Earth Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
137 schema:name Atmospheric Sciences
138 rdf:type schema:DefinedTerm
139 sg:journal.1136449 schema:issn 2095-6037
140 2198-0934
141 schema:name Journal of Meteorological Research
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.010730451257.54 schema:affiliation grid-institutes:grid.411307.0
145 schema:familyName Wang
146 schema:givenName Yongqian
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730451257.54
148 rdf:type schema:Person
149 sg:person.011246120473.51 schema:affiliation grid-institutes:grid.411307.0
150 schema:familyName Xia
151 schema:givenName Zhiye
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246120473.51
153 rdf:type schema:Person
154 sg:person.015611105677.75 schema:affiliation grid-institutes:grid.411307.0
155 schema:familyName Xu
156 schema:givenName Lisheng
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611105677.75
158 rdf:type schema:Person
159 sg:person.016623726603.92 schema:affiliation grid-institutes:grid.411307.0
160 schema:familyName Feng
161 schema:givenName Wenlan
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623726603.92
163 rdf:type schema:Person
164 sg:person.07476165275.31 schema:affiliation grid-institutes:grid.424023.3
165 schema:familyName Chen
166 schema:givenName Hongbin
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476165275.31
168 rdf:type schema:Person
169 sg:pub.10.1007/bfb0091924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049441366
170 https://doi.org/10.1007/bfb0091924
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00376-015-4252-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039184686
173 https://doi.org/10.1007/s00376-015-4252-2
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00382-014-2291-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030779049
176 https://doi.org/10.1007/s00382-014-2291-5
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00382-014-2461-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006286421
179 https://doi.org/10.1007/s00382-014-2461-5
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11069-015-1610-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033532491
182 https://doi.org/10.1007/s11069-015-1610-4
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s11430-012-4513-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014818138
185 https://doi.org/10.1007/s11430-012-4513-1
186 rdf:type schema:CreativeWork
187 grid-institutes:grid.411307.0 schema:alternateName College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China
188 Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China
189 schema:name College of Resources and Environment, Chengdu University of Information Technology, 610225, Chengdu, China
190 Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, 610225, Chengdu, China
191 rdf:type schema:Organization
192 grid-institutes:grid.424023.3 schema:alternateName Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
193 schema:name Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...