A new method to compare hourly rainfall between station observations and satellite products over central-eastern China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Haoming Chen, Rucong Yu, Yan Shen

ABSTRACT

This study employs a newly defined regional-rainfall-event (RRE) concept to compare the hourly characteristics of warm-season (May-September) rainfall among rain gauge observations, China merged hourly precipitation analysis (CMPA-Hourly), and two commonly used satellite products (TRMM 3B42 and CMORPH). By considering the rainfall characteristics in a given limited area rather than a single point or grid, this method largely eliminates the differences in rainfall characteristics among different observations or measurements over central-eastern China. The results show that the spatial distribution and diurnal variation of RRE frequency and intensity are quite consistent among different datasets, and the performance of CMPA-Hourly is better than the satellite products when compared with station observations. A regional rainfall coefficient (RRC), which can be used to classify local rain and regional rain, is employed to represent the spatial spread of rainfall in the limited region defining the RRE. It is found that rainfall spread in the selected grid box is more uniform during the nocturnal to morning hours over central-eastern China. The RRC tends to reach its diurnal maximum several hours after the RRE intensity peaks, implying an intermediate transition stage from convective to stratiform rainfall. In the afternoon, the RRC reaches its minimum, implying the dominance of local convections on small spatial scale in those hours, which could cause large differences in rain gauge and satellite observations. Since the RRE method reflects the overall features of rainfall in a limited region rather than at a fixed point or in a single grid, the widely recognized overestimation of afternoon rainfall in satellite products is not obvious, and thus the satellite estimates are more reliable in representing sub-daily variation of rainfall from the RRE perspective. This study proposes a reasonable method to compare satellite products with rain gauge observations on the sub-daily scale, which also has great potential to be used in evaluating the spatiotemporal variation of cloud and rainfall in numerical models. More... »

PAGES

737-757

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13351-016-6002-5

DOI

http://dx.doi.org/10.1007/s13351-016-6002-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000782791


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China Meteorological Administration", 
          "id": "https://www.grid.ac/institutes/grid.8658.3", 
          "name": [
            "State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Haoming", 
        "id": "sg:person.013514110753.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013514110753.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Meteorological Administration", 
          "id": "https://www.grid.ac/institutes/grid.8658.3", 
          "name": [
            "State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Rucong", 
        "id": "sg:person.015173077562.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173077562.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Meteorological Administration", 
          "id": "https://www.grid.ac/institutes/grid.8658.3", 
          "name": [
            "National Meteorological Information Center, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Yan", 
        "id": "sg:person.013334472637.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334472637.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/2009jcli3187.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001394334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442-16.10.1456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001526847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13351-013-0605-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002542097", 
          "https://doi.org/10.1007/s13351-013-0605-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl028129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002821455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004004097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004004097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/waf989.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004239833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98jd02720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005135278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0260-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005695037", 
          "https://doi.org/10.1007/s00382-007-0260-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0260-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005695037", 
          "https://doi.org/10.1007/s00382-007-0260-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/met.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009503504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2001)129<0784:tdcitt>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010866862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3454.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012334808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/sola.2013-029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012777881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jd014481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015587261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-12-00177.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015693233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013jd020686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015758835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm560.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018207213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018981874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010bams2819.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019931632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-84-9-1205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020798363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0547-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021715336", 
          "https://doi.org/10.1007/s00382-009-0547-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0547-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021715336", 
          "https://doi.org/10.1007/s00382-009-0547-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0547-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021715336", 
          "https://doi.org/10.1007/s00382-009-0547-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2028.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022822536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023118733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023118733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(2002)059<2033:iopaww>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024652890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jhm1052.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024995035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(2003)20<752:lreitb>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029130276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2188.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030116175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd005763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030674024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd005763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030674024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-2846.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032512584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-13-6965-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033298425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-14-0086.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035476589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jcli2051.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036380506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1975)103<0406:dvipat>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039350163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgrd.50337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039692520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-011-0020-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042011514", 
          "https://doi.org/10.1007/s00376-011-0020-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jhm1246.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043725650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.2384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044039172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3805.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044633317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jd017056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044830904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-011-0218-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046828238", 
          "https://doi.org/10.1007/s00376-011-0218-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<0983:dvotrr>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048157220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jd004815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048854595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl030315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049862934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00009.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051222738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1997)078<2179:spiroc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051327776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(98)00043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052637997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007wr006763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053668539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00656.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454938"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "This study employs a newly defined regional-rainfall-event (RRE) concept to compare the hourly characteristics of warm-season (May-September) rainfall among rain gauge observations, China merged hourly precipitation analysis (CMPA-Hourly), and two commonly used satellite products (TRMM 3B42 and CMORPH). By considering the rainfall characteristics in a given limited area rather than a single point or grid, this method largely eliminates the differences in rainfall characteristics among different observations or measurements over central-eastern China. The results show that the spatial distribution and diurnal variation of RRE frequency and intensity are quite consistent among different datasets, and the performance of CMPA-Hourly is better than the satellite products when compared with station observations. A regional rainfall coefficient (RRC), which can be used to classify local rain and regional rain, is employed to represent the spatial spread of rainfall in the limited region defining the RRE. It is found that rainfall spread in the selected grid box is more uniform during the nocturnal to morning hours over central-eastern China. The RRC tends to reach its diurnal maximum several hours after the RRE intensity peaks, implying an intermediate transition stage from convective to stratiform rainfall. In the afternoon, the RRC reaches its minimum, implying the dominance of local convections on small spatial scale in those hours, which could cause large differences in rain gauge and satellite observations. Since the RRE method reflects the overall features of rainfall in a limited region rather than at a fixed point or in a single grid, the widely recognized overestimation of afternoon rainfall in satellite products is not obvious, and thus the satellite estimates are more reliable in representing sub-daily variation of rainfall from the RRE perspective. This study proposes a reasonable method to compare satellite products with rain gauge observations on the sub-daily scale, which also has great potential to be used in evaluating the spatiotemporal variation of cloud and rainfall in numerical models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13351-016-6002-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136449", 
        "issn": [
          "2095-6037", 
          "2198-0934"
        ], 
        "name": "Journal of Meteorological Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "A new method to compare hourly rainfall between station observations and satellite products over central-eastern China", 
    "pagination": "737-757", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03ba4a3b61d060dc30ffa3743bf14644d508124fe7b432336e191d7b042d1a3e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13351-016-6002-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000782791"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13351-016-6002-5", 
      "https://app.dimensions.ai/details/publication/pub.1000782791"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13351-016-6002-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13351-016-6002-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13351-016-6002-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13351-016-6002-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13351-016-6002-5'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13351-016-6002-5 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Ne7fd3823d641446bb9f2582f210d79a1
4 schema:citation sg:pub.10.1007/s00376-011-0020-0
5 sg:pub.10.1007/s00376-011-0218-1
6 sg:pub.10.1007/s00382-007-0260-y
7 sg:pub.10.1007/s00382-009-0547-2
8 sg:pub.10.1007/s13351-013-0605-x
9 https://doi.org/10.1002/2013jd020686
10 https://doi.org/10.1002/jgrd.50337
11 https://doi.org/10.1002/joc.2384
12 https://doi.org/10.1002/joc.3886
13 https://doi.org/10.1002/met.64
14 https://doi.org/10.1016/s0309-1708(98)00043-8
15 https://doi.org/10.1029/2004jd004815
16 https://doi.org/10.1029/2005jd005763
17 https://doi.org/10.1029/2005jd006156
18 https://doi.org/10.1029/2006gl028129
19 https://doi.org/10.1029/2007gl030315
20 https://doi.org/10.1029/2007wr006763
21 https://doi.org/10.1029/2009jd012097
22 https://doi.org/10.1029/2010jd014481
23 https://doi.org/10.1029/2011jd017056
24 https://doi.org/10.1029/98jd02720
25 https://doi.org/10.1175/1520-0426(2003)20<752:lreitb>2.0.co;2
26 https://doi.org/10.1175/1520-0442(2002)015<0983:dvotrr>2.0.co;2
27 https://doi.org/10.1175/1520-0442-16.10.1456
28 https://doi.org/10.1175/1520-0469(2002)059<2033:iopaww>2.0.co;2
29 https://doi.org/10.1175/1520-0477(1997)078<2179:spiroc>2.0.co;2
30 https://doi.org/10.1175/1520-0493(1975)103<0406:dvipat>2.0.co;2
31 https://doi.org/10.1175/1520-0493(2001)129<0784:tdcitt>2.0.co;2
32 https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2
33 https://doi.org/10.1175/2007jcli2051.1
34 https://doi.org/10.1175/2008jcli2028.1
35 https://doi.org/10.1175/2008jcli2188.1
36 https://doi.org/10.1175/2008jhm1052.1
37 https://doi.org/10.1175/2009jcli3187.1
38 https://doi.org/10.1175/2010bams2819.1
39 https://doi.org/10.1175/2010jcli3454.1
40 https://doi.org/10.1175/2010jcli3805.1
41 https://doi.org/10.1175/2010jhm1246.1
42 https://doi.org/10.1175/bams-84-9-1205
43 https://doi.org/10.1175/jcli-d-11-00009.1
44 https://doi.org/10.1175/jcli-d-11-00656.1
45 https://doi.org/10.1175/jhm-d-14-0086.1
46 https://doi.org/10.1175/jhm560.1
47 https://doi.org/10.1175/mwr-2846.1
48 https://doi.org/10.1175/mwr-d-12-00177.1
49 https://doi.org/10.1175/waf989.1
50 https://doi.org/10.2151/sola.2013-029
51 https://doi.org/10.5194/acp-13-6965-2013
52 schema:datePublished 2016-08
53 schema:datePublishedReg 2016-08-01
54 schema:description This study employs a newly defined regional-rainfall-event (RRE) concept to compare the hourly characteristics of warm-season (May-September) rainfall among rain gauge observations, China merged hourly precipitation analysis (CMPA-Hourly), and two commonly used satellite products (TRMM 3B42 and CMORPH). By considering the rainfall characteristics in a given limited area rather than a single point or grid, this method largely eliminates the differences in rainfall characteristics among different observations or measurements over central-eastern China. The results show that the spatial distribution and diurnal variation of RRE frequency and intensity are quite consistent among different datasets, and the performance of CMPA-Hourly is better than the satellite products when compared with station observations. A regional rainfall coefficient (RRC), which can be used to classify local rain and regional rain, is employed to represent the spatial spread of rainfall in the limited region defining the RRE. It is found that rainfall spread in the selected grid box is more uniform during the nocturnal to morning hours over central-eastern China. The RRC tends to reach its diurnal maximum several hours after the RRE intensity peaks, implying an intermediate transition stage from convective to stratiform rainfall. In the afternoon, the RRC reaches its minimum, implying the dominance of local convections on small spatial scale in those hours, which could cause large differences in rain gauge and satellite observations. Since the RRE method reflects the overall features of rainfall in a limited region rather than at a fixed point or in a single grid, the widely recognized overestimation of afternoon rainfall in satellite products is not obvious, and thus the satellite estimates are more reliable in representing sub-daily variation of rainfall from the RRE perspective. This study proposes a reasonable method to compare satellite products with rain gauge observations on the sub-daily scale, which also has great potential to be used in evaluating the spatiotemporal variation of cloud and rainfall in numerical models.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N27850c5a3c1740b5ae134e8dc256a24e
59 Nd250b971b763472d9815d315d43bdd01
60 sg:journal.1136449
61 schema:name A new method to compare hourly rainfall between station observations and satellite products over central-eastern China
62 schema:pagination 737-757
63 schema:productId N3ee124dcdd424f9182fb730b77de55d6
64 N535d95f298f74df9a4acfbad6d79176e
65 N70fc429298a6418da7660539d782c1d3
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000782791
67 https://doi.org/10.1007/s13351-016-6002-5
68 schema:sdDatePublished 2019-04-11T12:26
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Ndbdff7d0e6e748d3ad7e34e13aeb6fd9
71 schema:url https://link.springer.com/10.1007%2Fs13351-016-6002-5
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N17c6905846dc4ab9914b1d962c84e49b rdf:first sg:person.015173077562.22
76 rdf:rest N5bfa324bea8548e4b459c5169c411447
77 N27850c5a3c1740b5ae134e8dc256a24e schema:issueNumber 5
78 rdf:type schema:PublicationIssue
79 N3ee124dcdd424f9182fb730b77de55d6 schema:name dimensions_id
80 schema:value pub.1000782791
81 rdf:type schema:PropertyValue
82 N535d95f298f74df9a4acfbad6d79176e schema:name readcube_id
83 schema:value 03ba4a3b61d060dc30ffa3743bf14644d508124fe7b432336e191d7b042d1a3e
84 rdf:type schema:PropertyValue
85 N5bfa324bea8548e4b459c5169c411447 rdf:first sg:person.013334472637.01
86 rdf:rest rdf:nil
87 N70fc429298a6418da7660539d782c1d3 schema:name doi
88 schema:value 10.1007/s13351-016-6002-5
89 rdf:type schema:PropertyValue
90 Nd250b971b763472d9815d315d43bdd01 schema:volumeNumber 30
91 rdf:type schema:PublicationVolume
92 Ndbdff7d0e6e748d3ad7e34e13aeb6fd9 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ne7fd3823d641446bb9f2582f210d79a1 rdf:first sg:person.013514110753.39
95 rdf:rest N17c6905846dc4ab9914b1d962c84e49b
96 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
97 schema:name Earth Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
100 schema:name Atmospheric Sciences
101 rdf:type schema:DefinedTerm
102 sg:journal.1136449 schema:issn 2095-6037
103 2198-0934
104 schema:name Journal of Meteorological Research
105 rdf:type schema:Periodical
106 sg:person.013334472637.01 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
107 schema:familyName Shen
108 schema:givenName Yan
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334472637.01
110 rdf:type schema:Person
111 sg:person.013514110753.39 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
112 schema:familyName Chen
113 schema:givenName Haoming
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013514110753.39
115 rdf:type schema:Person
116 sg:person.015173077562.22 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
117 schema:familyName Yu
118 schema:givenName Rucong
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173077562.22
120 rdf:type schema:Person
121 sg:pub.10.1007/s00376-011-0020-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042011514
122 https://doi.org/10.1007/s00376-011-0020-0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00376-011-0218-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046828238
125 https://doi.org/10.1007/s00376-011-0218-1
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00382-007-0260-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005695037
128 https://doi.org/10.1007/s00382-007-0260-y
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00382-009-0547-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021715336
131 https://doi.org/10.1007/s00382-009-0547-2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s13351-013-0605-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002542097
134 https://doi.org/10.1007/s13351-013-0605-x
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/2013jd020686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015758835
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/jgrd.50337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039692520
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/joc.2384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044039172
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/joc.3886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033298425
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/met.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009503504
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0309-1708(98)00043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052637997
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/2004jd004815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048854595
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1029/2005jd005763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030674024
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1029/2005jd006156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004004097
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1029/2006gl028129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002821455
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1029/2007gl030315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049862934
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1029/2007wr006763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053668539
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1029/2009jd012097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023118733
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1029/2010jd014481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015587261
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1029/2011jd017056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044830904
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1029/98jd02720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005135278
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1175/1520-0426(2003)20<752:lreitb>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029130276
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1175/1520-0442(2002)015<0983:dvotrr>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048157220
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1175/1520-0442-16.10.1456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001526847
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1175/1520-0469(2002)059<2033:iopaww>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024652890
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1175/1520-0477(1997)078<2179:spiroc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051327776
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1175/1520-0493(1975)103<0406:dvipat>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039350163
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1175/1520-0493(2001)129<0784:tdcitt>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010866862
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018981874
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1175/2007jcli2051.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036380506
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1175/2008jcli2028.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022822536
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1175/2008jcli2188.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030116175
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1175/2008jhm1052.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024995035
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1175/2009jcli3187.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001394334
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/2010bams2819.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019931632
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/2010jcli3454.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012334808
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/2010jcli3805.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044633317
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1175/2010jhm1246.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043725650
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1175/bams-84-9-1205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020798363
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1175/jcli-d-11-00009.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051222738
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1175/jcli-d-11-00656.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454938
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1175/jhm-d-14-0086.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035476589
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1175/jhm560.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018207213
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1175/mwr-2846.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032512584
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1175/mwr-d-12-00177.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015693233
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1175/waf989.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004239833
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2151/sola.2013-029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012777881
219 rdf:type schema:CreativeWork
220 https://doi.org/10.5194/acp-13-6965-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573234
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.8658.3 schema:alternateName China Meteorological Administration
223 schema:name National Meteorological Information Center, 100081, Beijing, China
224 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, 100081, Beijing, China
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...