Non-absolutely convergent integrals and singular integrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09

AUTHORS

Petr Honzík, Jan Malý

ABSTRACT

We define the packing integral (a kind of non-absolutely convergent integral) with respect to distributions of arbitrary order. Then we show that singular integrals can be interpreted as packing integrals with respect to generating distributions. This allows us to consider singular integrals beyond L1.

PAGES

367-377

References to SciGraph publications

Journal

TITLE

Collectanea Mathematica

ISSUE

3

VOLUME

65

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13348-013-0103-6

DOI

http://dx.doi.org/10.1007/s13348-013-0103-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028043022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Charles University", 
          "id": "https://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Mathematical Analysis, Charles University, Sokolovsk\u00e1 83, 186\u00a075, Praha 8, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honz\u00edk", 
        "givenName": "Petr", 
        "id": "sg:person.07427524643.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427524643.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charles University", 
          "id": "https://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Mathematical Analysis, Charles University, Sokolovsk\u00e1 83, 186\u00a075, Praha 8, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.016026347345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10231-013-0338-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005060503", 
          "https://doi.org/10.1007/s10231-013-0338-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10231-013-0338-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005060503", 
          "https://doi.org/10.1007/s10231-013-0338-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015363092", 
          "https://doi.org/10.1007/bf02392130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-11.1.402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035480711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-044450263-6/50014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043881769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2012.12.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048644855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5186/aasfm.2011.3609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072648689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511574764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098678839"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "We define the packing integral (a kind of non-absolutely convergent integral) with respect to distributions of arbitrary order. Then we show that singular integrals can be interpreted as packing integrals with respect to generating distributions. This allows us to consider singular integrals beyond L1.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13348-013-0103-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136480", 
        "issn": [
          "0010-0757", 
          "2038-4815"
        ], 
        "name": "Collectanea Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "name": "Non-absolutely convergent integrals and singular integrals", 
    "pagination": "367-377", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "859741fc83e6ad75d9250c5ffb6b278b8f216096e45e4c6d4cdc73da8d845602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13348-013-0103-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028043022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13348-013-0103-6", 
      "https://app.dimensions.ai/details/publication/pub.1028043022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13348-013-0103-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13348-013-0103-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13348-013-0103-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13348-013-0103-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13348-013-0103-6'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13348-013-0103-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc078a416cfd24b8daf14d2737e279c66
4 schema:citation sg:pub.10.1007/bf02392130
5 sg:pub.10.1007/s10231-013-0338-6
6 https://doi.org/10.1016/b978-044450263-6/50014-2
7 https://doi.org/10.1016/j.jmaa.2012.12.044
8 https://doi.org/10.1017/cbo9780511574764
9 https://doi.org/10.1112/plms/s3-11.1.402
10 https://doi.org/10.2307/2372517
11 https://doi.org/10.5186/aasfm.2011.3609
12 schema:datePublished 2014-09
13 schema:datePublishedReg 2014-09-01
14 schema:description We define the packing integral (a kind of non-absolutely convergent integral) with respect to distributions of arbitrary order. Then we show that singular integrals can be interpreted as packing integrals with respect to generating distributions. This allows us to consider singular integrals beyond L1.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2bc560c50359494299343188505b214d
19 Naa03641d60744e848e1c2a3fa17bd657
20 sg:journal.1136480
21 schema:name Non-absolutely convergent integrals and singular integrals
22 schema:pagination 367-377
23 schema:productId N5c15162527104862a133154e54c87125
24 Nc46fa688684941dcbec950217a83964a
25 Nf05edfa1b3534ef19b131fd1d0111564
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028043022
27 https://doi.org/10.1007/s13348-013-0103-6
28 schema:sdDatePublished 2019-04-10T15:54
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N13a3169b2cf84a58b18da90589db49a3
31 schema:url http://link.springer.com/10.1007%2Fs13348-013-0103-6
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N13a3169b2cf84a58b18da90589db49a3 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N2bc560c50359494299343188505b214d schema:volumeNumber 65
38 rdf:type schema:PublicationVolume
39 N5c15162527104862a133154e54c87125 schema:name dimensions_id
40 schema:value pub.1028043022
41 rdf:type schema:PropertyValue
42 N67798833a7494f9f9a101f83a0baf638 rdf:first sg:person.016026347345.35
43 rdf:rest rdf:nil
44 Naa03641d60744e848e1c2a3fa17bd657 schema:issueNumber 3
45 rdf:type schema:PublicationIssue
46 Nc078a416cfd24b8daf14d2737e279c66 rdf:first sg:person.07427524643.03
47 rdf:rest N67798833a7494f9f9a101f83a0baf638
48 Nc46fa688684941dcbec950217a83964a schema:name readcube_id
49 schema:value 859741fc83e6ad75d9250c5ffb6b278b8f216096e45e4c6d4cdc73da8d845602
50 rdf:type schema:PropertyValue
51 Nf05edfa1b3534ef19b131fd1d0111564 schema:name doi
52 schema:value 10.1007/s13348-013-0103-6
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136480 schema:issn 0010-0757
61 2038-4815
62 schema:name Collectanea Mathematica
63 rdf:type schema:Periodical
64 sg:person.016026347345.35 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
65 schema:familyName Malý
66 schema:givenName Jan
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35
68 rdf:type schema:Person
69 sg:person.07427524643.03 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
70 schema:familyName Honzík
71 schema:givenName Petr
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427524643.03
73 rdf:type schema:Person
74 sg:pub.10.1007/bf02392130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015363092
75 https://doi.org/10.1007/bf02392130
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/s10231-013-0338-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005060503
78 https://doi.org/10.1007/s10231-013-0338-6
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/b978-044450263-6/50014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043881769
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.jmaa.2012.12.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048644855
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1017/cbo9780511574764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098678839
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1112/plms/s3-11.1.402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035480711
87 rdf:type schema:CreativeWork
88 https://doi.org/10.2307/2372517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899173
89 rdf:type schema:CreativeWork
90 https://doi.org/10.5186/aasfm.2011.3609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072648689
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
93 schema:name Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 75, Praha 8, Czech Republic
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...