Forecasting in Light of Big Data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hykel Hosni, Angelo Vulpiani

ABSTRACT

Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on first principles, and the naïve-inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13347-017-0265-3

DOI

http://dx.doi.org/10.1007/s13347-017-0265-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085598433


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Filosofia, Universit\u00e0 degli Studi di Milano, via Festa del Perdono, 7, 20122, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosni", 
        "givenName": "Hykel", 
        "id": "sg:person.015241426247.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015241426247.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Roma Sapienza, Piazzale A. Moro, 5, 00185, Roma, Italy", 
            "Centro Linceo Inderdisciplinare \u201cBeniamino Segre\u201d, Accademia dei Lincei, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "Angelo", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/wics.1290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4159/harvard.9780674736061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005574669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1947-08927-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008941732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2016.0153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009112593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2053951714528481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016211031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2053951714528481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016211031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2053951716669530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016519864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2053951716669530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016519864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10699-014-9372-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017029275", 
          "https://doi.org/10.1007/s10699-014-9372-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004070000032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026694289", 
          "https://doi.org/10.1007/s004070000032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(98)00524-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027767741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1028664748", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-06361-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028664748", 
          "https://doi.org/10.1007/978-3-319-06361-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-06361-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028664748", 
          "https://doi.org/10.1007/978-3-319-06361-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.4746070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042001653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09515089.2013.827961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045324292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0091924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049441366", 
          "https://doi.org/10.1007/bfb0091924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11292-016-9272-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051453946", 
          "https://doi.org/10.1007/s11292-016-9272-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1248506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.194685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073283516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bigdatacongress.2015.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093838542"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on first principles, and the na\u00efve-inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13347-017-0265-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1046885", 
        "issn": [
          "2210-5433", 
          "2210-5441"
        ], 
        "name": "Philosophy & Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Forecasting in Light of Big Data", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b16ecbf17072ce8b28b0e6a5fd1aaf531f42866afec838044baf43354354521f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13347-017-0265-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085598433"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13347-017-0265-3", 
      "https://app.dimensions.ai/details/publication/pub.1085598433"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13347-017-0265-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13347-017-0265-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13347-017-0265-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13347-017-0265-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13347-017-0265-3'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      44 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13347-017-0265-3 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N611bc1f487ee410bb3cdd12ef7a1643d
4 schema:citation sg:pub.10.1007/978-3-319-06361-4
5 sg:pub.10.1007/bfb0091924
6 sg:pub.10.1007/s004070000032
7 sg:pub.10.1007/s10699-014-9372-0
8 sg:pub.10.1007/s11292-016-9272-0
9 https://app.dimensions.ai/details/publication/pub.1028664748
10 https://doi.org/10.1002/wics.1290
11 https://doi.org/10.1016/s0378-4371(98)00524-x
12 https://doi.org/10.1080/09515089.2013.827961
13 https://doi.org/10.1090/s0002-9904-1947-08927-8
14 https://doi.org/10.1098/rsta.2016.0153
15 https://doi.org/10.1103/physrev.91.1505
16 https://doi.org/10.1109/bigdatacongress.2015.43
17 https://doi.org/10.1119/1.4746070
18 https://doi.org/10.1126/science.1248506
19 https://doi.org/10.1177/2053951714528481
20 https://doi.org/10.1177/2053951716669530
21 https://doi.org/10.4159/harvard.9780674736061
22 https://doi.org/10.5860/choice.194685
23 schema:datePublished 2018-12
24 schema:datePublishedReg 2018-12-01
25 schema:description Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on first principles, and the naïve-inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf sg:journal.1046885
30 schema:name Forecasting in Light of Big Data
31 schema:pagination 1-13
32 schema:productId N3440600b48d24cffa31c06f0fccfce03
33 Nc1af77e0bf594db3ae83de890053d50b
34 Nf79d218e35ba4a27b12a8a3a6f4b57a5
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085598433
36 https://doi.org/10.1007/s13347-017-0265-3
37 schema:sdDatePublished 2019-04-10T20:42
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N86c0508b91874bf99c3d106367091a60
40 schema:url http://link.springer.com/10.1007/s13347-017-0265-3
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N3440600b48d24cffa31c06f0fccfce03 schema:name readcube_id
45 schema:value b16ecbf17072ce8b28b0e6a5fd1aaf531f42866afec838044baf43354354521f
46 rdf:type schema:PropertyValue
47 N611bc1f487ee410bb3cdd12ef7a1643d rdf:first sg:person.015241426247.60
48 rdf:rest Nfbeca410eb64429cb2db7233d5f53309
49 N86c0508b91874bf99c3d106367091a60 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nc1af77e0bf594db3ae83de890053d50b schema:name dimensions_id
52 schema:value pub.1085598433
53 rdf:type schema:PropertyValue
54 Nf79d218e35ba4a27b12a8a3a6f4b57a5 schema:name doi
55 schema:value 10.1007/s13347-017-0265-3
56 rdf:type schema:PropertyValue
57 Nfbeca410eb64429cb2db7233d5f53309 rdf:first sg:person.01352261626.07
58 rdf:rest rdf:nil
59 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
60 schema:name Earth Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
63 schema:name Atmospheric Sciences
64 rdf:type schema:DefinedTerm
65 sg:journal.1046885 schema:issn 2210-5433
66 2210-5441
67 schema:name Philosophy & Technology
68 rdf:type schema:Periodical
69 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
70 schema:familyName Vulpiani
71 schema:givenName Angelo
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
73 rdf:type schema:Person
74 sg:person.015241426247.60 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
75 schema:familyName Hosni
76 schema:givenName Hykel
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015241426247.60
78 rdf:type schema:Person
79 sg:pub.10.1007/978-3-319-06361-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028664748
80 https://doi.org/10.1007/978-3-319-06361-4
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bfb0091924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049441366
83 https://doi.org/10.1007/bfb0091924
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s004070000032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026694289
86 https://doi.org/10.1007/s004070000032
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s10699-014-9372-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017029275
89 https://doi.org/10.1007/s10699-014-9372-0
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s11292-016-9272-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051453946
92 https://doi.org/10.1007/s11292-016-9272-0
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1028664748 schema:CreativeWork
95 https://doi.org/10.1002/wics.1290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208257
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0378-4371(98)00524-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027767741
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/09515089.2013.827961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045324292
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/s0002-9904-1947-08927-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008941732
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1098/rsta.2016.0153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009112593
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrev.91.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460948
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/bigdatacongress.2015.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093838542
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1119/1.4746070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042001653
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1126/science.1248506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469256
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1177/2053951714528481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016211031
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1177/2053951716669530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016519864
116 rdf:type schema:CreativeWork
117 https://doi.org/10.4159/harvard.9780674736061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005574669
118 rdf:type schema:CreativeWork
119 https://doi.org/10.5860/choice.194685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073283516
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
122 schema:name Dipartimento di Filosofia, Università degli Studi di Milano, via Festa del Perdono, 7, 20122, Milano, Italy
123 rdf:type schema:Organization
124 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
125 schema:name Centro Linceo Inderdisciplinare “Beniamino Segre”, Accademia dei Lincei, Roma, Italy
126 Dipartimento di Fisica, Università degli Studi di Roma Sapienza, Piazzale A. Moro, 5, 00185, Roma, Italy
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...