Entropy method for generalized Poisson–Nernst–Planck equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

José Rodrigo González Granada, Victor A. Kovtunenko

ABSTRACT

A proper mathematical model given by nonlinear Poisson–Nernst–Planck (PNP) equations which describe electrokinetics of charged species is considered. The model is generalized with entropy variables associating the pressure and quasi-Fermi electro-chemical potentials in order to adhere to the law of conservation of mass. Based on a variational principle for suitable free energy, the generalized PNP system is endowed with the structure of a gradient flow. The well-posedness theorems for the mixed formulation (using the entropy variables) of the gradient-flow problem are provided within the Gibbs simplex and supported by a-priori estimates of the solution. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13324-018-0257-1

DOI

http://dx.doi.org/10.1007/s13324-018-0257-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107989518


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Department of Mathematics, Universidad Tecnol\u00f3gica de Pereira, 660003, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez Granada", 
        "givenName": "Jos\u00e9 Rodrigo", 
        "id": "sg:person.07650227305.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07650227305.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Heinrichstr.36, 8010, Graz, Austria", 
            "Lavrent\u2019ev Institute of Hydrodynamics, Siberian Division of Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovtunenko", 
        "givenName": "Victor A.", 
        "id": "sg:person.013632006501.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013632006501.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c3cp44390f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001439799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/28/6/1963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002124330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.3593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002763257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0615-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016966507", 
          "https://doi.org/10.1007/978-3-0348-0615-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0615-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016966507", 
          "https://doi.org/10.1007/978-3-0348-0615-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00033-012-0207-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018893730", 
          "https://doi.org/10.1007/s00033-012-0207-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10440-014-9968-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023221297", 
          "https://doi.org/10.1007/s10440-014-9968-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13324-012-0028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028298228", 
          "https://doi.org/10.1007/s13324-012-0028-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010445414795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031332925", 
          "https://doi.org/10.1023/a:1010445414795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02413623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031893333", 
          "https://doi.org/10.1007/bf02413623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02413623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031893333", 
          "https://doi.org/10.1007/bf02413623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13324-011-0019-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032045421", 
          "https://doi.org/10.1007/s13324-011-0019-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-011-0377-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036730856", 
          "https://doi.org/10.1007/s11590-011-0377-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-011-0377-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036730856", 
          "https://doi.org/10.1007/s11590-011-0377-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2015.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039298669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036811.2015.1105962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040732509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.4140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053567751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060667335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100783674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062858561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ans-2007-0309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067520475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47079-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083890144", 
          "https://doi.org/10.1007/978-3-319-47079-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/krm.2018007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091266021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/krm.2018007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091266021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12988/ces.2017.7760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091315741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2018.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101367269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "A proper mathematical model given by nonlinear Poisson\u2013Nernst\u2013Planck (PNP) equations which describe electrokinetics of charged species is considered. The model is generalized with entropy variables associating the pressure and quasi-Fermi electro-chemical potentials in order to adhere to the law of conservation of mass. Based on a variational principle for suitable free energy, the generalized PNP system is endowed with the structure of a gradient flow. The well-posedness theorems for the mixed formulation (using the entropy variables) of the gradient-flow problem are provided within the Gibbs simplex and supported by a-priori estimates of the solution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13324-018-0257-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6208758", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136403", 
        "issn": [
          "1664-2368", 
          "1664-235X"
        ], 
        "name": "Analysis and Mathematical Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Entropy method for generalized Poisson\u2013Nernst\u2013Planck equations", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82cfddd8941c704fe2e5c9dcc768940d03afe5a9a0f18d6b755fd28505ce1453"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13324-018-0257-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107989518"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13324-018-0257-1", 
      "https://app.dimensions.ai/details/publication/pub.1107989518"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000575.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13324-018-0257-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13324-018-0257-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13324-018-0257-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13324-018-0257-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13324-018-0257-1'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      47 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13324-018-0257-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nffb4301a73134c7dafb443ac282ceb18
4 schema:citation sg:pub.10.1007/978-3-0348-0615-2
5 sg:pub.10.1007/978-3-319-47079-5_9
6 sg:pub.10.1007/bf02413623
7 sg:pub.10.1007/s00033-012-0207-y
8 sg:pub.10.1007/s10440-014-9968-y
9 sg:pub.10.1007/s11590-011-0377-0
10 sg:pub.10.1007/s13324-011-0019-9
11 sg:pub.10.1007/s13324-012-0028-3
12 sg:pub.10.1023/a:1010445414795
13 https://doi.org/10.1002/mma.3593
14 https://doi.org/10.1002/mma.4140
15 https://doi.org/10.1016/j.cpc.2015.06.004
16 https://doi.org/10.1016/j.jmaa.2018.01.024
17 https://doi.org/10.1039/c3cp44390f
18 https://doi.org/10.1080/00036811.2015.1105962
19 https://doi.org/10.1088/0951-7715/28/6/1963
20 https://doi.org/10.1090/mmono/023
21 https://doi.org/10.1137/060667335
22 https://doi.org/10.1137/100783674
23 https://doi.org/10.12988/ces.2017.7760
24 https://doi.org/10.1515/ans-2007-0309
25 https://doi.org/10.3934/krm.2018007
26 schema:datePublished 2018-11
27 schema:datePublishedReg 2018-11-01
28 schema:description A proper mathematical model given by nonlinear Poisson–Nernst–Planck (PNP) equations which describe electrokinetics of charged species is considered. The model is generalized with entropy variables associating the pressure and quasi-Fermi electro-chemical potentials in order to adhere to the law of conservation of mass. Based on a variational principle for suitable free energy, the generalized PNP system is endowed with the structure of a gradient flow. The well-posedness theorems for the mixed formulation (using the entropy variables) of the gradient-flow problem are provided within the Gibbs simplex and supported by a-priori estimates of the solution.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1136403
33 schema:name Entropy method for generalized Poisson–Nernst–Planck equations
34 schema:pagination 1-17
35 schema:productId N441badb772cf416ca369969bf4834ade
36 N48cdbf78dc6b4b839ddce9945f7c5764
37 N598790d288dc4e86909465298a582b1c
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107989518
39 https://doi.org/10.1007/s13324-018-0257-1
40 schema:sdDatePublished 2019-04-10T15:11
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N9b1472be902043cc86877c7a7cc3f68b
43 schema:url https://link.springer.com/10.1007%2Fs13324-018-0257-1
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N441badb772cf416ca369969bf4834ade schema:name dimensions_id
48 schema:value pub.1107989518
49 rdf:type schema:PropertyValue
50 N48cdbf78dc6b4b839ddce9945f7c5764 schema:name doi
51 schema:value 10.1007/s13324-018-0257-1
52 rdf:type schema:PropertyValue
53 N598790d288dc4e86909465298a582b1c schema:name readcube_id
54 schema:value 82cfddd8941c704fe2e5c9dcc768940d03afe5a9a0f18d6b755fd28505ce1453
55 rdf:type schema:PropertyValue
56 N9b1472be902043cc86877c7a7cc3f68b schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nfda26dc40ccc4483b81834cdf7039604 rdf:first sg:person.013632006501.06
59 rdf:rest rdf:nil
60 Nffb4301a73134c7dafb443ac282ceb18 rdf:first sg:person.07650227305.07
61 rdf:rest Nfda26dc40ccc4483b81834cdf7039604
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:grant.6208758 http://pending.schema.org/fundedItem sg:pub.10.1007/s13324-018-0257-1
69 rdf:type schema:MonetaryGrant
70 sg:journal.1136403 schema:issn 1664-235X
71 1664-2368
72 schema:name Analysis and Mathematical Physics
73 rdf:type schema:Periodical
74 sg:person.013632006501.06 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
75 schema:familyName Kovtunenko
76 schema:givenName Victor A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013632006501.06
78 rdf:type schema:Person
79 sg:person.07650227305.07 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
80 schema:familyName González Granada
81 schema:givenName José Rodrigo
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07650227305.07
83 rdf:type schema:Person
84 sg:pub.10.1007/978-3-0348-0615-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016966507
85 https://doi.org/10.1007/978-3-0348-0615-2
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-319-47079-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083890144
88 https://doi.org/10.1007/978-3-319-47079-5_9
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02413623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031893333
91 https://doi.org/10.1007/bf02413623
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00033-012-0207-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018893730
94 https://doi.org/10.1007/s00033-012-0207-y
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10440-014-9968-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023221297
97 https://doi.org/10.1007/s10440-014-9968-y
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s11590-011-0377-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036730856
100 https://doi.org/10.1007/s11590-011-0377-0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s13324-011-0019-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032045421
103 https://doi.org/10.1007/s13324-011-0019-9
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s13324-012-0028-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028298228
106 https://doi.org/10.1007/s13324-012-0028-3
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1010445414795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031332925
109 https://doi.org/10.1023/a:1010445414795
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/mma.3593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002763257
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/mma.4140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053567751
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cpc.2015.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298669
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jmaa.2018.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101367269
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1039/c3cp44390f schema:sameAs https://app.dimensions.ai/details/publication/pub.1001439799
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/00036811.2015.1105962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040732509
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/0951-7715/28/6/1963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002124330
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1090/mmono/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567800
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1137/060667335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849621
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1137/100783674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062858561
130 rdf:type schema:CreativeWork
131 https://doi.org/10.12988/ces.2017.7760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091315741
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1515/ans-2007-0309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067520475
134 rdf:type schema:CreativeWork
135 https://doi.org/10.3934/krm.2018007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091266021
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
138 schema:name Department of Mathematics, Universidad Tecnológica de Pereira, 660003, Pereira, Colombia
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.415877.8 schema:alternateName Siberian Branch of the Russian Academy of Sciences
141 schema:name Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Heinrichstr.36, 8010, Graz, Austria
142 Lavrent’ev Institute of Hydrodynamics, Siberian Division of Russian Academy of Sciences, 630090, Novosibirsk, Russia
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...