Ontology type: schema:ScholarlyArticle
2013-12
AUTHORSInes Feki, Aref Jeribi, Ridha Sfaxi
ABSTRACTIn the present paper, we deal with the perturbed operator T(ε):=T0+εT1+ε2T2+⋯+εkTk+⋯,where ε∈C,T0 is a closed densely defined linear operator on a separable Banach space X with domain D(T0), while T1,T2,... are linear operators on X with the same domain D⊃D(T0) and satisfying a specific growing inequality. The basic idea here is to investigate under sufficient conditions assuring the invariance of the closure of the perturbed operator T(ε) which enables us to study the changed spectrum. Moreover, we prove that the system formed by some eigenvectors of T(ε) which are analytic on ε, forms a Schauder basis in X. After that, we apply the obtained results to a nonself-adjoint problem describing the radiation of a vibrating structure in a light fluid and to a nonself-adjoint Gribov operator in Bargmann space. More... »
PAGES311-331
http://scigraph.springernature.com/pub.10.1007/s13324-013-0060-y
DOIhttp://dx.doi.org/10.1007/s13324-013-0060-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041185583
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Sfax",
"id": "https://www.grid.ac/institutes/grid.412124.0",
"name": [
"D\u00e9partement de Math\u00e9matiques, Universit\u00e9 de Sfax, Facult\u00e9 des sciences de Sfax, Route de soukra Km 3.5, B.P. 1171, 3000, Sfax, Tunisie"
],
"type": "Organization"
},
"familyName": "Feki",
"givenName": "Ines",
"id": "sg:person.01014170452.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014170452.93"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Sfax",
"id": "https://www.grid.ac/institutes/grid.412124.0",
"name": [
"D\u00e9partement de Math\u00e9matiques, Universit\u00e9 de Sfax, Facult\u00e9 des sciences de Sfax, Route de soukra Km 3.5, B.P. 1171, 3000, Sfax, Tunisie"
],
"type": "Organization"
},
"familyName": "Jeribi",
"givenName": "Aref",
"id": "sg:person.010357230735.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010357230735.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Sfax",
"id": "https://www.grid.ac/institutes/grid.412124.0",
"name": [
"D\u00e9partement de Math\u00e9matiques, Universit\u00e9 de Sfax, Facult\u00e9 des sciences de Sfax, Route de soukra Km 3.5, B.P. 1171, 3000, Sfax, Tunisie"
],
"type": "Organization"
},
"familyName": "Sfaxi",
"givenName": "Ridha",
"id": "sg:person.011406024754.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406024754.01"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01571652",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001743875",
"https://doi.org/10.1007/bf01571652"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01571652",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001743875",
"https://doi.org/10.1007/bf01571652"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0022-247x(03)00484-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006757652"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmaa.2005.06.023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010709909"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jmaa.1998.6258",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022219702"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160140303",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027506402"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmaa.2010.08.074",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036322713"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jsvi.1994.1432",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053031353"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1143/ptp/4.4.514",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063145969"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-12",
"datePublishedReg": "2013-12-01",
"description": "In the present paper, we deal with the perturbed operator T(\u03b5):=T0+\u03b5T1+\u03b52T2+\u22ef+\u03b5kTk+\u22ef,where \u03b5\u2208C,T0 is a closed densely defined linear operator on a separable Banach space X with domain D(T0), while T1,T2,... are linear operators on X with the same domain D\u2283D(T0) and satisfying a specific growing inequality. The basic idea here is to investigate under sufficient conditions assuring the invariance of the closure of the perturbed operator T(\u03b5) which enables us to study the changed spectrum. Moreover, we prove that the system formed by some eigenvectors of T(\u03b5) which are analytic on \u03b5, forms a Schauder basis in X. After that, we apply the obtained results to a nonself-adjoint problem describing the radiation of a vibrating structure in a light fluid and to a nonself-adjoint Gribov operator in Bargmann space.",
"genre": "research_article",
"id": "sg:pub.10.1007/s13324-013-0060-y",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136403",
"issn": [
"1664-2368",
"1664-235X"
],
"name": "Analysis and Mathematical Physics",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"name": "On a Schauder basis related to the eigenvectors of a family of non-selfadjoint analytic operators and applications",
"pagination": "311-331",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"c4320b05d7bfc66ca4475ccc6f6df7a2f40a790dccc3756b3a27d046bf2b476a"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13324-013-0060-y"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041185583"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13324-013-0060-y",
"https://app.dimensions.ai/details/publication/pub.1041185583"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T17:34",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000523.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs13324-013-0060-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13324-013-0060-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13324-013-0060-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13324-013-0060-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13324-013-0060-y'
This table displays all metadata directly associated to this object as RDF triples.
100 TRIPLES
21 PREDICATES
35 URIs
19 LITERALS
7 BLANK NODES