Inequalities for angular derivatives and boundary interpolation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

Vladimir Bolotnikov, Mark Elin, David Shoikhet

ABSTRACT

The classical Julia–Wolff–Carathéodory theorem asserts that the angular derivative of a holomorphic self-mapping of the open unit disk (Schur function) at its boundary fixed point is a positive number. Cowen and Pommerenke (J Lond Math Soc 26:271–289, 1982) proved that if a Schur function has several boundary regular fixed (or mutual contact) points, then the angular derivatives at these points are subject to certain inequalities. We develop a unified approach to establish relations between angular derivatives of Schur functions with a prescribed (possibly, infinite) collection of either mutual contact points or boundary fixed points. This approach yields diverse inequalities improving both classical and more recent results. We apply them to study the Nevanlinna–Pick interpolation problem with boundary data. Our methods lead to fairly explicit formulas describing the set of solutions. More... »

PAGES

63-96

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13324-012-0050-5

DOI

http://dx.doi.org/10.1007/s13324-012-0050-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005331607


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ORT Braude College", 
          "id": "https://www.grid.ac/institutes/grid.426208.a", 
          "name": [
            "Department of Mathematics, Ort Braude College, 21982, Karmiel, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elin", 
        "givenName": "Mark", 
        "id": "sg:person.012415442601.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012415442601.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ORT Braude College", 
          "id": "https://www.grid.ac/institutes/grid.426208.a", 
          "name": [
            "Department of Mathematics, Ort Braude College, 21982, Karmiel, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shoikhet", 
        "givenName": "David", 
        "id": "sg:person.012563570675.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012563570675.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jfa.2006.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000646471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02770-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003982861", 
          "https://doi.org/10.1007/978-3-662-02770-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02770-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003982861", 
          "https://doi.org/10.1007/978-3-662-02770-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005171999", 
          "https://doi.org/10.1007/bf01456817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005171999", 
          "https://doi.org/10.1007/bf01456817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01095405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007349067", 
          "https://doi.org/10.1007/bf01095405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01095405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007349067", 
          "https://doi.org/10.1007/bf01095405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-00-05463-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016001509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-3577(02)80032-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021225439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s2-26.2.271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026038579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/22.5.446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027245774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7547-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030149691", 
          "https://doi.org/10.1007/3-7643-7547-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-1994-1242454-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032368899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(79)90231-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033991423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9632-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165557", 
          "https://doi.org/10.1007/978-94-015-9632-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9632-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165557", 
          "https://doi.org/10.1007/978-94-015-9632-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17476930108815374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036111713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-03-03170-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036484634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0887-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038503639", 
          "https://doi.org/10.1007/978-1-4612-0887-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0887-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038503639", 
          "https://doi.org/10.1007/978-1-4612-0887-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01890578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040283637", 
          "https://doi.org/10.1007/bf01890578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01890578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040283637", 
          "https://doi.org/10.1007/bf01890578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200610809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043442978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200610809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043442978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11854-008-0049-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044424990", 
          "https://doi.org/10.1007/s11854-008-0049-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10231-010-0165-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049656861", 
          "https://doi.org/10.1007/s10231-010-0165-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11785-007-0028-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050013999", 
          "https://doi.org/10.1007/s11785-007-0028-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2002.206.425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899897"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "The classical Julia\u2013Wolff\u2013Carath\u00e9odory theorem asserts that the angular derivative of a holomorphic self-mapping of the open unit disk (Schur function) at its boundary fixed point is a positive number. Cowen and Pommerenke (J Lond Math Soc 26:271\u2013289, 1982) proved that if a Schur function has several boundary regular fixed (or mutual contact) points, then the angular derivatives at these points are subject to certain inequalities. We develop a unified approach to establish relations between angular derivatives of Schur functions with a prescribed (possibly, infinite) collection of either mutual contact points or boundary fixed points. This approach yields diverse inequalities improving both classical and more recent results. We apply them to study the Nevanlinna\u2013Pick interpolation problem with boundary data. Our methods lead to fairly explicit formulas describing the set of solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13324-012-0050-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136403", 
        "issn": [
          "1664-2368", 
          "1664-235X"
        ], 
        "name": "Analysis and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Inequalities for angular derivatives and boundary interpolation", 
    "pagination": "63-96", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1966b89086df4f95ad383f431fe1c16f07820a78e4c5d51c4e725dcdf4dd7e41"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13324-012-0050-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005331607"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13324-012-0050-5", 
      "https://app.dimensions.ai/details/publication/pub.1005331607"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13324-012-0050-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13324-012-0050-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13324-012-0050-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13324-012-0050-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13324-012-0050-5'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13324-012-0050-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7dba83a61f914baa8aaf6c691237c405
4 schema:citation sg:pub.10.1007/3-7643-7547-7_3
5 sg:pub.10.1007/978-1-4612-0887-7
6 sg:pub.10.1007/978-3-662-02770-7
7 sg:pub.10.1007/978-94-015-9632-9
8 sg:pub.10.1007/bf01095405
9 sg:pub.10.1007/bf01238220
10 sg:pub.10.1007/bf01456817
11 sg:pub.10.1007/bf01890578
12 sg:pub.10.1007/s10231-010-0165-y
13 sg:pub.10.1007/s11785-007-0028-8
14 sg:pub.10.1007/s11854-008-0049-x
15 https://doi.org/10.1002/mana.200610809
16 https://doi.org/10.1016/0022-247x(79)90231-2
17 https://doi.org/10.1016/j.jfa.2006.03.016
18 https://doi.org/10.1016/s0019-3577(02)80032-5
19 https://doi.org/10.1080/17476930108815374
20 https://doi.org/10.1090/memo/0856
21 https://doi.org/10.1090/s0002-9939-00-05463-0
22 https://doi.org/10.1090/s0002-9947-03-03170-2
23 https://doi.org/10.1090/s0894-0347-1994-1242454-2
24 https://doi.org/10.1112/blms/22.5.446
25 https://doi.org/10.1112/jlms/s2-26.2.271
26 https://doi.org/10.2140/pjm.2002.206.425
27 https://doi.org/10.2307/2373326
28 schema:datePublished 2013-03
29 schema:datePublishedReg 2013-03-01
30 schema:description The classical Julia–Wolff–Carathéodory theorem asserts that the angular derivative of a holomorphic self-mapping of the open unit disk (Schur function) at its boundary fixed point is a positive number. Cowen and Pommerenke (J Lond Math Soc 26:271–289, 1982) proved that if a Schur function has several boundary regular fixed (or mutual contact) points, then the angular derivatives at these points are subject to certain inequalities. We develop a unified approach to establish relations between angular derivatives of Schur functions with a prescribed (possibly, infinite) collection of either mutual contact points or boundary fixed points. This approach yields diverse inequalities improving both classical and more recent results. We apply them to study the Nevanlinna–Pick interpolation problem with boundary data. Our methods lead to fairly explicit formulas describing the set of solutions.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N8bae6207047046ccbd16d1050cb4978c
35 Nc27c1eb36ab14abf8a0aa169119adc29
36 sg:journal.1136403
37 schema:name Inequalities for angular derivatives and boundary interpolation
38 schema:pagination 63-96
39 schema:productId N032b94feb5a64fa484d650f9a11ed455
40 N0ac951e93de54ba88ddc39c1df62b4c6
41 N6f3c85a6570040b79680e057e1cb29e8
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005331607
43 https://doi.org/10.1007/s13324-012-0050-5
44 schema:sdDatePublished 2019-04-11T02:07
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N083f59937fbc4822984326b0c292aceb
47 schema:url http://link.springer.com/10.1007%2Fs13324-012-0050-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N032b94feb5a64fa484d650f9a11ed455 schema:name dimensions_id
52 schema:value pub.1005331607
53 rdf:type schema:PropertyValue
54 N083f59937fbc4822984326b0c292aceb schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N0ac951e93de54ba88ddc39c1df62b4c6 schema:name readcube_id
57 schema:value 1966b89086df4f95ad383f431fe1c16f07820a78e4c5d51c4e725dcdf4dd7e41
58 rdf:type schema:PropertyValue
59 N6f3c85a6570040b79680e057e1cb29e8 schema:name doi
60 schema:value 10.1007/s13324-012-0050-5
61 rdf:type schema:PropertyValue
62 N7dba83a61f914baa8aaf6c691237c405 rdf:first sg:person.01130533744.43
63 rdf:rest Nf4f5a297330a4c308587970db5495b4e
64 N8bae6207047046ccbd16d1050cb4978c schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 Nc27c1eb36ab14abf8a0aa169119adc29 schema:volumeNumber 3
67 rdf:type schema:PublicationVolume
68 Nce1d54f3894844eaba75f925e9233680 rdf:first sg:person.012563570675.68
69 rdf:rest rdf:nil
70 Nf4f5a297330a4c308587970db5495b4e rdf:first sg:person.012415442601.68
71 rdf:rest Nce1d54f3894844eaba75f925e9233680
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1136403 schema:issn 1664-235X
79 1664-2368
80 schema:name Analysis and Mathematical Physics
81 rdf:type schema:Periodical
82 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
83 schema:familyName Bolotnikov
84 schema:givenName Vladimir
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
86 rdf:type schema:Person
87 sg:person.012415442601.68 schema:affiliation https://www.grid.ac/institutes/grid.426208.a
88 schema:familyName Elin
89 schema:givenName Mark
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012415442601.68
91 rdf:type schema:Person
92 sg:person.012563570675.68 schema:affiliation https://www.grid.ac/institutes/grid.426208.a
93 schema:familyName Shoikhet
94 schema:givenName David
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012563570675.68
96 rdf:type schema:Person
97 sg:pub.10.1007/3-7643-7547-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030149691
98 https://doi.org/10.1007/3-7643-7547-7_3
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-1-4612-0887-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038503639
101 https://doi.org/10.1007/978-1-4612-0887-7
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-662-02770-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003982861
104 https://doi.org/10.1007/978-3-662-02770-7
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-94-015-9632-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034165557
107 https://doi.org/10.1007/978-94-015-9632-9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01095405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007349067
110 https://doi.org/10.1007/bf01095405
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01238220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033101609
113 https://doi.org/10.1007/bf01238220
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01456817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005171999
116 https://doi.org/10.1007/bf01456817
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01890578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040283637
119 https://doi.org/10.1007/bf01890578
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10231-010-0165-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049656861
122 https://doi.org/10.1007/s10231-010-0165-y
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11785-007-0028-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050013999
125 https://doi.org/10.1007/s11785-007-0028-8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11854-008-0049-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044424990
128 https://doi.org/10.1007/s11854-008-0049-x
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/mana.200610809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043442978
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0022-247x(79)90231-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033991423
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jfa.2006.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000646471
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0019-3577(02)80032-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021225439
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/17476930108815374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036111713
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/memo/0856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343905
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1090/s0002-9939-00-05463-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016001509
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1090/s0002-9947-03-03170-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036484634
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1090/s0894-0347-1994-1242454-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032368899
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1112/blms/22.5.446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027245774
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1112/jlms/s2-26.2.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026038579
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2140/pjm.2002.206.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069071144
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2307/2373326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899897
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
157 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.426208.a schema:alternateName ORT Braude College
160 schema:name Department of Mathematics, Ort Braude College, 21982, Karmiel, Israel
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...