Fast and Easy 3D Reconstruction with the Help of Geometric Constraints and Genetic Algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Afafe Annich, Abdellatif El Abderrahmani, Khalid Satori

ABSTRACT

The purpose of the work presented in this paper is to describe new method of 3D reconstruction from one or more uncalibrated images. This method is based on two important concepts: geometric constraints and genetic algorithms (GAs). At first, we are going to discuss the combination between bundle adjustment and GAs that we have proposed in order to improve 3D reconstruction efficiency and success. We used GAs in order to improve fitness quality of initial values that are used in the optimization problem. It will increase surely convergence rate. Extracted geometric constraints are used first to obtain an estimated value of focal length that helps us in the initialization step. Matching homologous points and constraints is used to estimate the 3D model. In fact, our new method gives us a lot of advantages: reducing the estimated parameter number in optimization step, decreasing used image number, winning time and stabilizing good quality of 3D results. At the end, without any prior information about our 3D scene, we obtain an accurate calibration of the cameras, and a realistic 3D model that strictly respects the geometric constraints defined before in an easy way. Various data and examples will be used to highlight the efficiency and competitiveness of our present approach. More... »

PAGES

30

References to SciGraph publications

  • 2016-03. Reconstruction of 3D Scenes by Camera Self-Calibration and Using Genetic Algorithms in 3D RESEARCH
  • 1998. Imposing Euclidean Constraints During Self-Calibration Processes in 3D STRUCTURE FROM MULTIPLE IMAGES OF LARGE-SCALE ENVIRONMENTS
  • 2002-04-12. Bundle Adjustment — A Modern Synthesis in VISION ALGORITHMS: THEORY AND PRACTICE
  • 1998. Metric 3D Surface Reconstruction from Uncalibrated Image Sequences in 3D STRUCTURE FROM MULTIPLE IMAGES OF LARGE-SCALE ENVIRONMENTS
  • 1998. Euclidean and Affine Structure/Motion for Uncalibrated Cameras from Affine Shape and Subsidiary Information in 3D STRUCTURE FROM MULTIPLE IMAGES OF LARGE-SCALE ENVIRONMENTS
  • 1998. Geometrically Constrained Structure from Motion: Points on Planes in 3D STRUCTURE FROM MULTIPLE IMAGES OF LARGE-SCALE ENVIRONMENTS
  • 2004-09. SoftPOSIT: Simultaneous Pose and Correspondence Determination in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1997-01. An introduction to genetic algorithms Melanie Mitchell. MIT Press, Cambridge MA, 1996. $30.00 (cloth), 270 pp in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2006-11. Canonical Representation and Multi-View Geometry of Cylinders in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2009-06. Riccardo Poli, William B. Langdon, Nicholas F. McPhee: A Field Guide to Genetic Programming in GENETIC PROGRAMMING AND EVOLVABLE MACHINES
  • 2002. New Techniques for Automated Architectural Reconstruction from Photographs in COMPUTER VISION — ECCV 2002
  • 1995-06. Model-based object pose in 25 lines of code in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2002. 3D Modelling Using Geometric Constraints: A Parallelepiped Based Approach in COMPUTER VISION — ECCV 2002
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13319-017-0139-6

    DOI

    http://dx.doi.org/10.1007/s13319-017-0139-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091100658


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "LIIAN, Department of Computer Sciences Dhar-Mahraz Sciences School, University Sidi Mohammed Ben Abdellah, P.B 1796, Atlas-Fez, Morocco"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Annich", 
            "givenName": "Afafe", 
            "id": "sg:person.016440572715.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016440572715.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "LIIAN, Department of Computer Sciences Dhar-Mahraz Sciences School, University Sidi Mohammed Ben Abdellah, P.B 1796, Atlas-Fez, Morocco", 
                "Larache Poly Disciplinary School, Larache, Morocco"
              ], 
              "type": "Organization"
            }, 
            "familyName": "El Abderrahmani", 
            "givenName": "Abdellatif", 
            "id": "sg:person.014013660127.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014013660127.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "LIIAN, Department of Computer Sciences Dhar-Mahraz Sciences School, University Sidi Mohammed Ben Abdellah, P.B 1796, Atlas-Fez, Morocco"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Satori", 
            "givenName": "Khalid", 
            "id": "sg:person.016075546214.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016075546214.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2012.03043.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003925092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cag.2014.09.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004482789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49437-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019420523", 
              "https://doi.org/10.1007/3-540-49437-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-08-094832-4.50020-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023195747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49437-5_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025970020", 
              "https://doi.org/10.1007/3-540-49437-5_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49437-5_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032753422", 
              "https://doi.org/10.1007/3-540-49437-5_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000025800.10423.1f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034790416", 
              "https://doi.org/10.1023/b:visi.0000025800.10423.1f"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47979-1_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035907468", 
              "https://doi.org/10.1007/3-540-47979-1_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49437-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042501222", 
              "https://doi.org/10.1007/3-540-49437-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-7935-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044428845", 
              "https://doi.org/10.1007/s11263-006-7935-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/237170.237191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045338552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10710-008-9073-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045514855", 
              "https://doi.org/10.1007/s10710-008-9073-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-08-050684-5.50016-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045622565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47967-8_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048231828", 
              "https://doi.org/10.1007/3-540-47967-8_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01450852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049757864", 
              "https://doi.org/10.1007/bf01450852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01450852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049757864", 
              "https://doi.org/10.1007/bf01450852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1878083.1878100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051433532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13319-016-0082-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051836601", 
              "https://doi.org/10.1007/s13319-016-0082-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0263574700223217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054008817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0263574700223217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054008817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s0092-8240(96)00095-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054615035", 
              "https://doi.org/10.1016/s0092-8240(96)00095-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcsvt.2003.817355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061574484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1986.289288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061793830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2000.854872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093555038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2001.937528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094184083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.1999.791194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095045013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isacv.2015.7106180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095052228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2001.937510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095645759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/3904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098876945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.16.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099368980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.16.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099368990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.17.9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099383034"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09", 
        "datePublishedReg": "2017-09-01", 
        "description": "The purpose of the work presented in this paper is to describe new method of 3D reconstruction from one or more uncalibrated images. This method is based on two important concepts: geometric constraints and genetic algorithms (GAs). At first, we are going to discuss the combination between bundle adjustment and GAs that we have proposed in order to improve 3D reconstruction efficiency and success. We used GAs in order to improve fitness quality of initial values that are used in the optimization problem. It will increase surely convergence rate. Extracted geometric constraints are used first to obtain an estimated value of focal length that helps us in the initialization step. Matching homologous points and constraints is used to estimate the 3D model. In fact, our new method gives us a lot of advantages: reducing the estimated parameter number in optimization step, decreasing used image number, winning time and stabilizing good quality of 3D results. At the end, without any prior information about our 3D scene, we obtain an accurate calibration of the cameras, and a realistic 3D model that strictly respects the geometric constraints defined before in an easy way. Various data and examples will be used to highlight the efficiency and competitiveness of our present approach. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13319-017-0139-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136468", 
            "issn": [
              "2092-6731"
            ], 
            "name": "3D Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Fast and Easy 3D Reconstruction with the Help of Geometric Constraints and Genetic Algorithms", 
        "pagination": "30", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1a9075088930cd2656354037deed5fb7a196416c487371d9d654acd158050ea3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13319-017-0139-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091100658"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13319-017-0139-6", 
          "https://app.dimensions.ai/details/publication/pub.1091100658"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13319-017-0139-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13319-017-0139-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13319-017-0139-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13319-017-0139-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13319-017-0139-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    187 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13319-017-0139-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc602ec4831aa425f93b9ab440e89100f
    4 schema:citation sg:pub.10.1007/3-540-44480-7_21
    5 sg:pub.10.1007/3-540-47967-8_36
    6 sg:pub.10.1007/3-540-47979-1_15
    7 sg:pub.10.1007/3-540-49437-5_10
    8 sg:pub.10.1007/3-540-49437-5_12
    9 sg:pub.10.1007/3-540-49437-5_13
    10 sg:pub.10.1007/3-540-49437-5_15
    11 sg:pub.10.1007/bf01450852
    12 sg:pub.10.1007/s10710-008-9073-y
    13 sg:pub.10.1007/s11263-006-7935-4
    14 sg:pub.10.1007/s13319-016-0082-y
    15 sg:pub.10.1016/s0092-8240(96)00095-x
    16 sg:pub.10.1023/b:visi.0000025800.10423.1f
    17 https://doi.org/10.1016/b978-0-08-050684-5.50016-1
    18 https://doi.org/10.1016/b978-0-08-094832-4.50020-9
    19 https://doi.org/10.1016/j.cag.2014.09.031
    20 https://doi.org/10.1017/s0263574700223217
    21 https://doi.org/10.1109/cvpr.2000.854872
    22 https://doi.org/10.1109/iccv.1999.791194
    23 https://doi.org/10.1109/iccv.2001.937510
    24 https://doi.org/10.1109/iccv.2001.937528
    25 https://doi.org/10.1109/isacv.2015.7106180
    26 https://doi.org/10.1109/tcsvt.2003.817355
    27 https://doi.org/10.1109/tpami.2005.40
    28 https://doi.org/10.1109/tsmc.1986.289288
    29 https://doi.org/10.1111/j.1467-8659.2012.03043.x
    30 https://doi.org/10.1142/3904
    31 https://doi.org/10.1145/1878083.1878100
    32 https://doi.org/10.1145/237170.237191
    33 https://doi.org/10.5244/c.16.20
    34 https://doi.org/10.5244/c.16.3
    35 https://doi.org/10.5244/c.17.9
    36 schema:datePublished 2017-09
    37 schema:datePublishedReg 2017-09-01
    38 schema:description The purpose of the work presented in this paper is to describe new method of 3D reconstruction from one or more uncalibrated images. This method is based on two important concepts: geometric constraints and genetic algorithms (GAs). At first, we are going to discuss the combination between bundle adjustment and GAs that we have proposed in order to improve 3D reconstruction efficiency and success. We used GAs in order to improve fitness quality of initial values that are used in the optimization problem. It will increase surely convergence rate. Extracted geometric constraints are used first to obtain an estimated value of focal length that helps us in the initialization step. Matching homologous points and constraints is used to estimate the 3D model. In fact, our new method gives us a lot of advantages: reducing the estimated parameter number in optimization step, decreasing used image number, winning time and stabilizing good quality of 3D results. At the end, without any prior information about our 3D scene, we obtain an accurate calibration of the cameras, and a realistic 3D model that strictly respects the geometric constraints defined before in an easy way. Various data and examples will be used to highlight the efficiency and competitiveness of our present approach.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N3b92e68061674b3dab5fc39465d14ca1
    43 Nba749c7e1a7042e680a11e7a6971598b
    44 sg:journal.1136468
    45 schema:name Fast and Easy 3D Reconstruction with the Help of Geometric Constraints and Genetic Algorithms
    46 schema:pagination 30
    47 schema:productId N200f8d8e29d24cf0b01713ad70a8a5d4
    48 N76b8c7d2a69743168c68ef981cb4c00d
    49 Nc4ac33d5b6a5455abce39902af80f6c0
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091100658
    51 https://doi.org/10.1007/s13319-017-0139-6
    52 schema:sdDatePublished 2019-04-11T10:04
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N89ce004e25a64b188d4f91ece4b756b9
    55 schema:url https://link.springer.com/10.1007%2Fs13319-017-0139-6
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N200f8d8e29d24cf0b01713ad70a8a5d4 schema:name readcube_id
    60 schema:value 1a9075088930cd2656354037deed5fb7a196416c487371d9d654acd158050ea3
    61 rdf:type schema:PropertyValue
    62 N35948570f96b4d70b9c5cf8af3825870 rdf:first sg:person.016075546214.18
    63 rdf:rest rdf:nil
    64 N3b92e68061674b3dab5fc39465d14ca1 schema:issueNumber 3
    65 rdf:type schema:PublicationIssue
    66 N4e7fc7ec10e04e068af0f8dd4698d2f0 schema:name LIIAN, Department of Computer Sciences Dhar-Mahraz Sciences School, University Sidi Mohammed Ben Abdellah, P.B 1796, Atlas-Fez, Morocco
    67 rdf:type schema:Organization
    68 N51c7c4d788514f6e88782a0d9c8424ee schema:name LIIAN, Department of Computer Sciences Dhar-Mahraz Sciences School, University Sidi Mohammed Ben Abdellah, P.B 1796, Atlas-Fez, Morocco
    69 rdf:type schema:Organization
    70 N76b8c7d2a69743168c68ef981cb4c00d schema:name dimensions_id
    71 schema:value pub.1091100658
    72 rdf:type schema:PropertyValue
    73 N89ce004e25a64b188d4f91ece4b756b9 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N9d7c3b7a69164170a5ffc662b401a3de rdf:first sg:person.014013660127.21
    76 rdf:rest N35948570f96b4d70b9c5cf8af3825870
    77 Nba749c7e1a7042e680a11e7a6971598b schema:volumeNumber 8
    78 rdf:type schema:PublicationVolume
    79 Nc4ac33d5b6a5455abce39902af80f6c0 schema:name doi
    80 schema:value 10.1007/s13319-017-0139-6
    81 rdf:type schema:PropertyValue
    82 Nc602ec4831aa425f93b9ab440e89100f rdf:first sg:person.016440572715.84
    83 rdf:rest N9d7c3b7a69164170a5ffc662b401a3de
    84 Ne514951ea89a4a36a461f01821688782 schema:name LIIAN, Department of Computer Sciences Dhar-Mahraz Sciences School, University Sidi Mohammed Ben Abdellah, P.B 1796, Atlas-Fez, Morocco
    85 Larache Poly Disciplinary School, Larache, Morocco
    86 rdf:type schema:Organization
    87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Information and Computing Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Artificial Intelligence and Image Processing
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1136468 schema:issn 2092-6731
    94 schema:name 3D Research
    95 rdf:type schema:Periodical
    96 sg:person.014013660127.21 schema:affiliation Ne514951ea89a4a36a461f01821688782
    97 schema:familyName El Abderrahmani
    98 schema:givenName Abdellatif
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014013660127.21
    100 rdf:type schema:Person
    101 sg:person.016075546214.18 schema:affiliation N4e7fc7ec10e04e068af0f8dd4698d2f0
    102 schema:familyName Satori
    103 schema:givenName Khalid
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016075546214.18
    105 rdf:type schema:Person
    106 sg:person.016440572715.84 schema:affiliation N51c7c4d788514f6e88782a0d9c8424ee
    107 schema:familyName Annich
    108 schema:givenName Afafe
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016440572715.84
    110 rdf:type schema:Person
    111 sg:pub.10.1007/3-540-44480-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371683
    112 https://doi.org/10.1007/3-540-44480-7_21
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/3-540-47967-8_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048231828
    115 https://doi.org/10.1007/3-540-47967-8_36
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/3-540-47979-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035907468
    118 https://doi.org/10.1007/3-540-47979-1_15
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/3-540-49437-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019420523
    121 https://doi.org/10.1007/3-540-49437-5_10
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/3-540-49437-5_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032753422
    124 https://doi.org/10.1007/3-540-49437-5_12
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/3-540-49437-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025970020
    127 https://doi.org/10.1007/3-540-49437-5_13
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/3-540-49437-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042501222
    130 https://doi.org/10.1007/3-540-49437-5_15
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf01450852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049757864
    133 https://doi.org/10.1007/bf01450852
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s10710-008-9073-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045514855
    136 https://doi.org/10.1007/s10710-008-9073-y
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s11263-006-7935-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044428845
    139 https://doi.org/10.1007/s11263-006-7935-4
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s13319-016-0082-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051836601
    142 https://doi.org/10.1007/s13319-016-0082-y
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1016/s0092-8240(96)00095-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054615035
    145 https://doi.org/10.1016/s0092-8240(96)00095-x
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1023/b:visi.0000025800.10423.1f schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790416
    148 https://doi.org/10.1023/b:visi.0000025800.10423.1f
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/b978-0-08-050684-5.50016-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045622565
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/b978-0-08-094832-4.50020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023195747
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.cag.2014.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004482789
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1017/s0263574700223217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054008817
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/cvpr.2000.854872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093555038
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/iccv.1999.791194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095045013
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/iccv.2001.937510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095645759
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/iccv.2001.937528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094184083
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/isacv.2015.7106180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095052228
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tcsvt.2003.817355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061574484
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tpami.2005.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742906
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/tsmc.1986.289288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793830
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1111/j.1467-8659.2012.03043.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003925092
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1142/3904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098876945
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1145/1878083.1878100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051433532
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1145/237170.237191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045338552
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.5244/c.16.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099368980
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.5244/c.16.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099368990
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.5244/c.17.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099383034
    187 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...