Laboratory Computer-Based Interventions for Better Adherence to Guidelines in the Diagnosis and Monitoring of Type 2 Diabetes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Maria Salinas, Maite López-Garrigós, Emilio Flores, Javier Lugo, Carlos Leiva-Salinas, the PRIMary Care-LABoratory (PRIMLAB) Working Group

ABSTRACT

INTRODUCTION: The aim was to present two automated laboratory strategies designed to detect new cases of type 2 diabetes and prediabetes and improve their monitoring. METHODS: To improve diabetes diagnosis, we automatically registered the glycated hemoglobin (HbA1c) levels of every primary care patient between 25 and 46 years old in case of abnormal lipid testing when an HbA1c test had not been requested in the current order or during the previous year and when fasting glucose was > 100 mg/dl. We counted the number of detected cases of diabetes and prediabetes and calculated the cost per identified patient. To improve diabetes monitoring, the levels of HbA1c, total cholesterol, high- and low-density lipoprotein cholesterol and triglycerides and the spot urinary albumin-to-creatinine ratios (ACRs) were automatically registered in patients with diabetes when not ordered according to guidelines. We calculated the total economic costs according to the total number of additional registered tests and reagent cost. RESULTS: Of 103,425 requests, 224 (0.22%) met the inclusion criteria. Seventeen (7.6%) patients were identified as having new cases of diabetes and 149 (66.5%) of prediabetes, at a cost of €15.2 and €2.3, respectively, per case detected. From 13,874 requests in patients with diabetes, 91 HbA1c and 708 lipid tests and 862 ACRs were automatically registered to comply with guidelines, resulting in expenses of €1948.90. CONCLUSIONS: Making use of laboratory technology, it is possible to detect new cases of type 2 diabetes and prediabetes and to improve disease monitoring. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13300-019-0600-z

DOI

http://dx.doi.org/10.1007/s13300-019-0600-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113054691

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30924078


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Miguel Hernandez University", 
          "id": "https://www.grid.ac/institutes/grid.26811.3c", 
          "name": [
            "Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Spain", 
            "Department of Biochemistry and Molecular Pathology, Universidad Miguel Hernandez, Elche, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salinas", 
        "givenName": "Maria", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Universitari Sant Joan D'Alacant", 
          "id": "https://www.grid.ac/institutes/grid.411263.3", 
          "name": [
            "Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-Garrig\u00f3s", 
        "givenName": "Maite", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Miguel Hernandez University", 
          "id": "https://www.grid.ac/institutes/grid.26811.3c", 
          "name": [
            "Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Spain", 
            "Department of Clinical Medicine, Universidad Miguel Hernandez, Elche, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flores", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Universitari Sant Joan D'Alacant", 
          "id": "https://www.grid.ac/institutes/grid.411263.3", 
          "name": [
            "Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lugo", 
        "givenName": "Javier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Department of Radiology, University of Missouri, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leiva-Salinas", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "the PRIMary Care-LABoratory (PRIMLAB) Working Group", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejm199309303291401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004144761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinbiochem.2014.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004410060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11613/bm.2016.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005319389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6823-14-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015304356", 
          "https://doi.org/10.1186/1472-6823-14-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(98)07019-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018881858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2013.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019729093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1309/lm8oi14lcorjyhvy", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025536190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.recesp.2015.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027647587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2296-12-98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032090519", 
          "https://doi.org/10.1186/1471-2296-12-98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032203188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/kisup.2012.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035927631", 
          "https://doi.org/10.1038/kisup.2012.76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2015.17545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036040714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.endonu.2011.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038952270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-200108002-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045530668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-200108002-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045530668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11613/bm.2016.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063347991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078414512", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-017-0981-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084022806", 
          "https://doi.org/10.1007/s00592-017-0981-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-017-0981-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084022806", 
          "https://doi.org/10.1007/s00592-017-0981-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1085913529", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0004563217716475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090389994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0004563217716475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090389994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/cd17-0119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099626152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/cd17-0119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099626152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc18-s002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099630050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc18-s003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099630581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm-2017-1116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103753046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm-2017-1116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103753046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-018-1159-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104043736", 
          "https://doi.org/10.1007/s00592-018-1159-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-018-1236-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107532147", 
          "https://doi.org/10.1007/s00592-018-1236-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-018-1236-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107532147", 
          "https://doi.org/10.1007/s00592-018-1236-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "INTRODUCTION: The aim was to present two automated laboratory strategies designed to detect new cases of type 2 diabetes and prediabetes and improve their monitoring.\nMETHODS: To improve diabetes diagnosis, we automatically registered the glycated hemoglobin (HbA1c) levels of every primary care patient between 25 and 46\u00a0years old in case of abnormal lipid testing when an HbA1c test had not been requested in the current order or during the previous year and when fasting glucose was > 100\u00a0mg/dl. We counted the number of detected cases of diabetes and prediabetes and calculated the cost per identified patient. To improve diabetes monitoring, the levels of HbA1c, total cholesterol, high- and low-density lipoprotein cholesterol and triglycerides and the spot urinary albumin-to-creatinine ratios (ACRs) were automatically registered in patients with diabetes when not ordered according to guidelines. We calculated the total economic costs according to the total number of additional registered tests and reagent cost.\nRESULTS: Of 103,425 requests, 224 (0.22%) met the inclusion criteria. Seventeen (7.6%) patients were identified as having new cases of diabetes and 149 (66.5%) of prediabetes, at a cost of \u20ac15.2 and \u20ac2.3, respectively, per case detected. From 13,874 requests in patients with diabetes, 91 HbA1c and 708 lipid tests and 862 ACRs were automatically registered to comply with guidelines, resulting in expenses of \u20ac1948.90.\nCONCLUSIONS: Making use of laboratory technology, it is possible to detect new cases of type 2 diabetes and prediabetes and to improve disease monitoring.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13300-019-0600-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044057", 
        "issn": [
          "1869-6953", 
          "1869-6961"
        ], 
        "name": "Diabetes Therapy", 
        "type": "Periodical"
      }
    ], 
    "name": "Laboratory Computer-Based Interventions for Better Adherence to Guidelines in the Diagnosis and Monitoring of Type 2 Diabetes", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c96da4b91bbc1b2e1e340a3146e1d7bcb22e960ba76b29ce2f1bdecdb14041e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30924078"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101539025"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13300-019-0600-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113054691"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13300-019-0600-z", 
      "https://app.dimensions.ai/details/publication/pub.1113054691"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13300-019-0600-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0600-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0600-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0600-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0600-z'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      51 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13300-019-0600-z schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N7cae9b3c170c42dc9ca8da071ef70a7d
4 schema:citation sg:pub.10.1007/s00592-017-0981-2
5 sg:pub.10.1007/s00592-018-1159-2
6 sg:pub.10.1007/s00592-018-1236-6
7 sg:pub.10.1038/kisup.2012.76
8 sg:pub.10.1186/1471-2296-12-98
9 sg:pub.10.1186/1472-6823-14-56
10 https://app.dimensions.ai/details/publication/pub.1078414512
11 https://app.dimensions.ai/details/publication/pub.1085913529
12 https://doi.org/10.1001/jama.2015.17545
13 https://doi.org/10.1016/j.bone.2013.05.011
14 https://doi.org/10.1016/j.clinbiochem.2014.04.020
15 https://doi.org/10.1016/j.endonu.2011.02.009
16 https://doi.org/10.1016/j.jacc.2004.07.001
17 https://doi.org/10.1016/j.recesp.2015.11.036
18 https://doi.org/10.1016/s0140-6736(98)07019-6
19 https://doi.org/10.1056/nejm199309303291401
20 https://doi.org/10.1097/00005650-200108002-00002
21 https://doi.org/10.11613/bm.2016.013
22 https://doi.org/10.11613/bm.2016.045
23 https://doi.org/10.1177/0004563217716475
24 https://doi.org/10.1309/lm8oi14lcorjyhvy
25 https://doi.org/10.1515/cclm-2017-1116
26 https://doi.org/10.2337/cd17-0119
27 https://doi.org/10.2337/dc18-s002
28 https://doi.org/10.2337/dc18-s003
29 schema:datePublished 2019-03-28
30 schema:datePublishedReg 2019-03-28
31 schema:description INTRODUCTION: The aim was to present two automated laboratory strategies designed to detect new cases of type 2 diabetes and prediabetes and improve their monitoring. METHODS: To improve diabetes diagnosis, we automatically registered the glycated hemoglobin (HbA1c) levels of every primary care patient between 25 and 46 years old in case of abnormal lipid testing when an HbA1c test had not been requested in the current order or during the previous year and when fasting glucose was > 100 mg/dl. We counted the number of detected cases of diabetes and prediabetes and calculated the cost per identified patient. To improve diabetes monitoring, the levels of HbA1c, total cholesterol, high- and low-density lipoprotein cholesterol and triglycerides and the spot urinary albumin-to-creatinine ratios (ACRs) were automatically registered in patients with diabetes when not ordered according to guidelines. We calculated the total economic costs according to the total number of additional registered tests and reagent cost. RESULTS: Of 103,425 requests, 224 (0.22%) met the inclusion criteria. Seventeen (7.6%) patients were identified as having new cases of diabetes and 149 (66.5%) of prediabetes, at a cost of €15.2 and €2.3, respectively, per case detected. From 13,874 requests in patients with diabetes, 91 HbA1c and 708 lipid tests and 862 ACRs were automatically registered to comply with guidelines, resulting in expenses of €1948.90. CONCLUSIONS: Making use of laboratory technology, it is possible to detect new cases of type 2 diabetes and prediabetes and to improve disease monitoring.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1044057
36 schema:name Laboratory Computer-Based Interventions for Better Adherence to Guidelines in the Diagnosis and Monitoring of Type 2 Diabetes
37 schema:pagination 1-9
38 schema:productId N1cc1a4399de240cd825d3bee8e7cc0f6
39 N7db29e6d4acf4b2db6c054f99831ed1e
40 N8fc6b78277994e40b0ec274865678368
41 Na96e27e872474632852f70ca6fde9c3a
42 Nf688cf3534644ccea7960f8d10dd647c
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113054691
44 https://doi.org/10.1007/s13300-019-0600-z
45 schema:sdDatePublished 2019-04-11T13:19
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nfaf01f986249410ba80f79011d03be2f
48 schema:url https://link.springer.com/10.1007%2Fs13300-019-0600-z
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N084df9983aac4257b163a653b2d050c4 schema:affiliation https://www.grid.ac/institutes/grid.411263.3
53 schema:familyName Lugo
54 schema:givenName Javier
55 rdf:type schema:Person
56 N1cc1a4399de240cd825d3bee8e7cc0f6 schema:name readcube_id
57 schema:value 6c96da4b91bbc1b2e1e340a3146e1d7bcb22e960ba76b29ce2f1bdecdb14041e
58 rdf:type schema:PropertyValue
59 N2f84e8fba8d74f2ea31692c326a57d47 rdf:first N084df9983aac4257b163a653b2d050c4
60 rdf:rest N9c1302a6368b41dc9574c2454b8d9dfb
61 N3dff1b0a9f2e4d8a996cde6a2d8a329f schema:affiliation https://www.grid.ac/institutes/grid.26811.3c
62 schema:familyName Flores
63 schema:givenName Emilio
64 rdf:type schema:Person
65 N57eedee204894b4980ba77a4f754f7d4 schema:affiliation https://www.grid.ac/institutes/grid.26811.3c
66 schema:familyName Salinas
67 schema:givenName Maria
68 rdf:type schema:Person
69 N59986f6fe2bc4a6ba1df38b6edb23229 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
70 schema:familyName Leiva-Salinas
71 schema:givenName Carlos
72 rdf:type schema:Person
73 N7215feb8d1c747a9be5cf99ff7f47159 schema:familyName the PRIMary Care-LABoratory (PRIMLAB) Working Group
74 rdf:type schema:Person
75 N7cae9b3c170c42dc9ca8da071ef70a7d rdf:first N57eedee204894b4980ba77a4f754f7d4
76 rdf:rest Nae7da2bdec3b42bd9df95ed7b4c934c4
77 N7db29e6d4acf4b2db6c054f99831ed1e schema:name nlm_unique_id
78 schema:value 101539025
79 rdf:type schema:PropertyValue
80 N8fc6b78277994e40b0ec274865678368 schema:name dimensions_id
81 schema:value pub.1113054691
82 rdf:type schema:PropertyValue
83 N9c1302a6368b41dc9574c2454b8d9dfb rdf:first N59986f6fe2bc4a6ba1df38b6edb23229
84 rdf:rest Ne60c47a95f914184a19bd2f6f33265f7
85 Na96e27e872474632852f70ca6fde9c3a schema:name pubmed_id
86 schema:value 30924078
87 rdf:type schema:PropertyValue
88 Nae7da2bdec3b42bd9df95ed7b4c934c4 rdf:first Ndb35fe4a45af4708a62333a9d0426fd6
89 rdf:rest Nc9e2bc90cd4e4b339c87accacf5bad3b
90 Nc9e2bc90cd4e4b339c87accacf5bad3b rdf:first N3dff1b0a9f2e4d8a996cde6a2d8a329f
91 rdf:rest N2f84e8fba8d74f2ea31692c326a57d47
92 Ndb35fe4a45af4708a62333a9d0426fd6 schema:affiliation https://www.grid.ac/institutes/grid.411263.3
93 schema:familyName López-Garrigós
94 schema:givenName Maite
95 rdf:type schema:Person
96 Ne60c47a95f914184a19bd2f6f33265f7 rdf:first N7215feb8d1c747a9be5cf99ff7f47159
97 rdf:rest rdf:nil
98 Nf688cf3534644ccea7960f8d10dd647c schema:name doi
99 schema:value 10.1007/s13300-019-0600-z
100 rdf:type schema:PropertyValue
101 Nfaf01f986249410ba80f79011d03be2f schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
107 schema:name Clinical Sciences
108 rdf:type schema:DefinedTerm
109 sg:journal.1044057 schema:issn 1869-6953
110 1869-6961
111 schema:name Diabetes Therapy
112 rdf:type schema:Periodical
113 sg:pub.10.1007/s00592-017-0981-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084022806
114 https://doi.org/10.1007/s00592-017-0981-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00592-018-1159-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104043736
117 https://doi.org/10.1007/s00592-018-1159-2
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00592-018-1236-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107532147
120 https://doi.org/10.1007/s00592-018-1236-6
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/kisup.2012.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035927631
123 https://doi.org/10.1038/kisup.2012.76
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/1471-2296-12-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032090519
126 https://doi.org/10.1186/1471-2296-12-98
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/1472-6823-14-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015304356
129 https://doi.org/10.1186/1472-6823-14-56
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1078414512 schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1085913529 schema:CreativeWork
133 https://doi.org/10.1001/jama.2015.17545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036040714
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.bone.2013.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019729093
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.clinbiochem.2014.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004410060
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.endonu.2011.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038952270
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jacc.2004.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032203188
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.recesp.2015.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027647587
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0140-6736(98)07019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018881858
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1056/nejm199309303291401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004144761
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1097/00005650-200108002-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045530668
150 rdf:type schema:CreativeWork
151 https://doi.org/10.11613/bm.2016.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005319389
152 rdf:type schema:CreativeWork
153 https://doi.org/10.11613/bm.2016.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063347991
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1177/0004563217716475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090389994
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1309/lm8oi14lcorjyhvy schema:sameAs https://app.dimensions.ai/details/publication/pub.1025536190
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1515/cclm-2017-1116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103753046
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2337/cd17-0119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099626152
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2337/dc18-s002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099630050
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2337/dc18-s003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099630581
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.134936.a schema:alternateName University of Missouri
168 schema:name Department of Radiology, University of Missouri, Columbia, MO, USA
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.26811.3c schema:alternateName Miguel Hernandez University
171 schema:name Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Spain
172 Department of Biochemistry and Molecular Pathology, Universidad Miguel Hernandez, Elche, Spain
173 Department of Clinical Medicine, Universidad Miguel Hernandez, Elche, Spain
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.411263.3 schema:alternateName Hospital Universitari Sant Joan D'Alacant
176 schema:name Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Spain
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...