Rates of Hypoglycemia Predicted in Patients with Type 2 Diabetes on Insulin Glargine 300 U/ml Versus First- and Second-Generation Basal ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-14

AUTHORS

Jeremy Pettus, Ronan Roussel, Fang Liz Zhou, Zsolt Bosnyak, Jukka Westerbacka, Rachele Berria, Javier Jimenez, Björn Eliasson, Irene Hramiak, Timothy Bailey, Luigi Meneghini

ABSTRACT

IntroductionThe LIGHTNING study applied conventional and advanced analytic approaches to model, predict, and compare hypoglycemia rates of people with type 2 diabetes (T2DM) on insulin glargine 300 U/ml (Gla-300) with those on first-generation (insulin glargine 100 U/ml [Gla-100]; insulin detemir [IDet]) or second-generation (insulin degludec [IDeg]) basal-insulin (BI) analogs, utilizing a large real-world database.MethodsData were collected between 1 January 2007 and 31 March 2017 from the Optum Humedica US electronic health records [EHR] database. Patient-treatments, the period during which a patient used a specific BI, were analyzed for patients who switched from a prior BI or those who newly initiated BI therapy. Data were analyzed using two approaches: propensity score matching (PSM) and a predictive modeling approach using machine learning.ResultsA total of 831,456 patients with T2DM receiving BI were included from the EHR data set. Following selection, 198,198 patient-treatments were available for predictive modeling. The analysis showed that rates of severe hypoglycemia (using a modified definition) were approximately 50% lower with Gla-300 than with Gla-100 or IDet in insulin-naïve individuals, and 30% lower versus IDet in BI switchers (all p < 0.05). Similar rates of severe hypoglycemia were predicted for Gla-300 and IDeg, regardless of prior insulin experience. Similar results to those observed in the overall cohorts were seen in analyses across subgroups at a particularly high risk of hypoglycemia.PSM (performed on 157,573 patient-treatments) revealed comparable reductions in HbA1c with Gla-300 versus first- and second-generation BI analogs, alongside lower rates of severe hypoglycemia with Gla-300 versus first-generation BI analogs (p < 0.05) and similar rates versus IDeg in insulin-naïve and BI-switcher cohorts.ConclusionsBased on real-world data, predicted rates of severe hypoglycemia with Gla-300 tended to be lower versus first-generation BI analogs and similar versus IDeg in a wide spectrum of patients with T2DM.FundingSanofi, Paris, France. More... »

PAGES

617-633

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13300-019-0568-8

DOI

http://dx.doi.org/10.1007/s13300-019-0568-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112140157

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30767173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Medicine, University of California, San Diego, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "School of Medicine, University of California, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pettus", 
        "givenName": "Jeremy", 
        "id": "sg:person.01360722750.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360722750.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Hopital Bichat, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.411119.d", 
          "name": [
            "Inserm U1138, Centre de Recherche Des Cordeliers, Paris, France", 
            "University Paris Diderot, Sorbonne Paris Cite, Paris, France", 
            "Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Hopital Bichat, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roussel", 
        "givenName": "Ronan", 
        "id": "sg:person.0723511711.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723511711.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sanofi, Bridgewater, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.417555.7", 
          "name": [
            "Sanofi, Bridgewater, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liz Zhou", 
        "givenName": "Fang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sanofi, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.417924.d", 
          "name": [
            "Sanofi, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bosnyak", 
        "givenName": "Zsolt", 
        "id": "sg:person.01341321261.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341321261.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Westerbacka", 
        "givenName": "Jukka", 
        "id": "sg:person.0710201311.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710201311.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sanofi, Bridgewater, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.417555.7", 
          "name": [
            "Sanofi, Bridgewater, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berria", 
        "givenName": "Rachele", 
        "id": "sg:person.0711665445.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711665445.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sanofi, Bridgewater, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.417555.7", 
          "name": [
            "Sanofi, Bridgewater, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jimenez", 
        "givenName": "Javier", 
        "id": "sg:person.015445203554.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445203554.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Goteborg, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.8761.8", 
          "name": [
            "Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Goteborg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eliasson", 
        "givenName": "Bj\u00f6rn", 
        "id": "sg:person.0777745537.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777745537.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawson Research Institute, University of Western Ontario, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Lawson Research Institute, University of Western Ontario, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hramiak", 
        "givenName": "Irene", 
        "id": "sg:person.01050764017.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050764017.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AMCR Institute, Escondido, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.477010.5", 
          "name": [
            "AMCR Institute, Escondido, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bailey", 
        "givenName": "Timothy", 
        "id": "sg:person.0656205570.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656205570.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Global Diabetes Program, Parkland Health & Hospital System, Dallas, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.417169.c", 
          "name": [
            "Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA", 
            "Global Diabetes Program, Parkland Health & Hospital System, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meneghini", 
        "givenName": "Luigi", 
        "id": "sg:person.01132503075.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132503075.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13300-019-0567-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112140156", 
          "https://doi.org/10.1007/s13300-019-0567-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-7525-11-90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013049175", 
          "https://doi.org/10.1186/1477-7525-11-90"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrendo.2014.170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051668850", 
          "https://doi.org/10.1038/nrendo.2014.170"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "IntroductionThe LIGHTNING study applied conventional and advanced analytic approaches to model, predict, and compare hypoglycemia rates of people with type 2 diabetes (T2DM) on insulin glargine 300 U/ml (Gla-300) with those on first-generation (insulin glargine 100 U/ml [Gla-100]; insulin detemir [IDet]) or second-generation (insulin degludec [IDeg]) basal-insulin (BI) analogs, utilizing a large real-world database.MethodsData were collected between 1 January 2007 and 31 March 2017 from the Optum Humedica US electronic health records [EHR] database. Patient-treatments, the period during which a patient used a specific BI, were analyzed for patients who switched from a prior BI or those who newly initiated BI therapy. Data were analyzed using two approaches: propensity score matching (PSM) and a predictive modeling approach using machine learning.ResultsA total of 831,456 patients with T2DM receiving BI were included from the EHR data set. Following selection, 198,198 patient-treatments were available for predictive modeling. The analysis showed that rates of severe hypoglycemia (using a modified definition) were approximately 50% lower with Gla-300 than with Gla-100 or IDet in insulin-na\u00efve individuals, and 30% lower versus IDet in BI switchers (all p\u2009<\u20090.05). Similar rates of severe hypoglycemia were predicted for Gla-300 and IDeg, regardless of prior insulin experience. Similar results to those observed in the overall cohorts were seen in analyses across subgroups at a particularly high risk of hypoglycemia.PSM (performed on 157,573 patient-treatments) revealed comparable reductions in HbA1c with Gla-300 versus first- and second-generation BI analogs, alongside lower rates of severe hypoglycemia with Gla-300 versus first-generation BI analogs (p\u2009<\u20090.05) and similar rates versus IDeg in insulin-na\u00efve and BI-switcher cohorts.ConclusionsBased on real-world data, predicted rates of severe hypoglycemia with Gla-300 tended to be lower versus first-generation BI analogs and similar versus IDeg in a wide spectrum of patients with T2DM.FundingSanofi, Paris, France.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13300-019-0568-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1044057", 
        "issn": [
          "1869-6953", 
          "1869-6961"
        ], 
        "name": "Diabetes Therapy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "insulin glargine 300 U/", 
      "glargine 300 U/", 
      "Gla-300", 
      "type 2 diabetes", 
      "severe hypoglycemia", 
      "US electronic health record database", 
      "second-generation basal insulins", 
      "second-generation basal insulin analogues", 
      "electronic health record database", 
      "insulin-na\u00efve individuals", 
      "basal insulin analogues", 
      "rate of hypoglycemia", 
      "health record database", 
      "similar rates", 
      "Gla-100", 
      "hypoglycemia rates", 
      "overall cohort", 
      "insulin na\u00efve", 
      "basal insulin", 
      "BI therapy", 
      "ResultsA total", 
      "high risk", 
      "EHR data sets", 
      "hypoglycemia", 
      "patients", 
      "record database", 
      "propensity score", 
      "IDeg", 
      "comparable reduction", 
      "T2DM", 
      "diabetes", 
      "IDet", 
      "cohort", 
      "lower rates", 
      "wide spectrum", 
      "large real-world databases", 
      "HbA1c", 
      "similar results", 
      "MethodsData", 
      "therapy", 
      "insulin", 
      "rate", 
      "Bis analogs", 
      "subgroups", 
      "scores", 
      "total", 
      "risk", 
      "database", 
      "study", 
      "analogues", 
      "PSM", 
      "individuals", 
      "advanced analytic approaches", 
      "period", 
      "specific Bi", 
      "data", 
      "real-world data", 
      "reduction", 
      "analysis", 
      "people", 
      "experience", 
      "analytic approach", 
      "predictive modeling", 
      "real-world databases", 
      "predictive modeling approach", 
      "switchers", 
      "approach", 
      "results", 
      "France", 
      "selection", 
      "First", 
      "Paris", 
      "data sets", 
      "Bi", 
      "spectra", 
      "modeling approach", 
      "set", 
      "modeling", 
      "machine", 
      "lightning studies"
    ], 
    "name": "Rates of Hypoglycemia Predicted in Patients with Type 2 Diabetes on Insulin Glargine 300 U/ml Versus First- and Second-Generation Basal Insulin Analogs: The Real-World LIGHTNING Study", 
    "pagination": "617-633", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112140157"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13300-019-0568-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30767173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13300-019-0568-8", 
      "https://app.dimensions.ai/details/publication/pub.1112140157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_810.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13300-019-0568-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0568-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0568-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0568-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13300-019-0568-8'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      108 URIs      97 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13300-019-0568-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N915d071411744db3bffaaeb9c6929893
4 schema:citation sg:pub.10.1007/s13300-019-0567-9
5 sg:pub.10.1038/nrendo.2014.170
6 sg:pub.10.1186/1477-7525-11-90
7 schema:datePublished 2019-02-14
8 schema:datePublishedReg 2019-02-14
9 schema:description IntroductionThe LIGHTNING study applied conventional and advanced analytic approaches to model, predict, and compare hypoglycemia rates of people with type 2 diabetes (T2DM) on insulin glargine 300 U/ml (Gla-300) with those on first-generation (insulin glargine 100 U/ml [Gla-100]; insulin detemir [IDet]) or second-generation (insulin degludec [IDeg]) basal-insulin (BI) analogs, utilizing a large real-world database.MethodsData were collected between 1 January 2007 and 31 March 2017 from the Optum Humedica US electronic health records [EHR] database. Patient-treatments, the period during which a patient used a specific BI, were analyzed for patients who switched from a prior BI or those who newly initiated BI therapy. Data were analyzed using two approaches: propensity score matching (PSM) and a predictive modeling approach using machine learning.ResultsA total of 831,456 patients with T2DM receiving BI were included from the EHR data set. Following selection, 198,198 patient-treatments were available for predictive modeling. The analysis showed that rates of severe hypoglycemia (using a modified definition) were approximately 50% lower with Gla-300 than with Gla-100 or IDet in insulin-naïve individuals, and 30% lower versus IDet in BI switchers (all p < 0.05). Similar rates of severe hypoglycemia were predicted for Gla-300 and IDeg, regardless of prior insulin experience. Similar results to those observed in the overall cohorts were seen in analyses across subgroups at a particularly high risk of hypoglycemia.PSM (performed on 157,573 patient-treatments) revealed comparable reductions in HbA1c with Gla-300 versus first- and second-generation BI analogs, alongside lower rates of severe hypoglycemia with Gla-300 versus first-generation BI analogs (p < 0.05) and similar rates versus IDeg in insulin-naïve and BI-switcher cohorts.ConclusionsBased on real-world data, predicted rates of severe hypoglycemia with Gla-300 tended to be lower versus first-generation BI analogs and similar versus IDeg in a wide spectrum of patients with T2DM.FundingSanofi, Paris, France.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N36e9ebcc180548929c684e4199617743
13 Nd6d7700cd4ba4cfcb0a08f77317f1b1d
14 sg:journal.1044057
15 schema:keywords BI therapy
16 Bi
17 Bis analogs
18 EHR data sets
19 First
20 France
21 Gla-100
22 Gla-300
23 HbA1c
24 IDeg
25 IDet
26 MethodsData
27 PSM
28 Paris
29 ResultsA total
30 T2DM
31 US electronic health record database
32 advanced analytic approaches
33 analogues
34 analysis
35 analytic approach
36 approach
37 basal insulin
38 basal insulin analogues
39 cohort
40 comparable reduction
41 data
42 data sets
43 database
44 diabetes
45 electronic health record database
46 experience
47 glargine 300 U/
48 health record database
49 high risk
50 hypoglycemia
51 hypoglycemia rates
52 individuals
53 insulin
54 insulin glargine 300 U/
55 insulin naïve
56 insulin-naïve individuals
57 large real-world databases
58 lightning studies
59 lower rates
60 machine
61 modeling
62 modeling approach
63 overall cohort
64 patients
65 people
66 period
67 predictive modeling
68 predictive modeling approach
69 propensity score
70 rate
71 rate of hypoglycemia
72 real-world data
73 real-world databases
74 record database
75 reduction
76 results
77 risk
78 scores
79 second-generation basal insulin analogues
80 second-generation basal insulins
81 selection
82 set
83 severe hypoglycemia
84 similar rates
85 similar results
86 specific Bi
87 spectra
88 study
89 subgroups
90 switchers
91 therapy
92 total
93 type 2 diabetes
94 wide spectrum
95 schema:name Rates of Hypoglycemia Predicted in Patients with Type 2 Diabetes on Insulin Glargine 300 U/ml Versus First- and Second-Generation Basal Insulin Analogs: The Real-World LIGHTNING Study
96 schema:pagination 617-633
97 schema:productId N13188497686d4d0aade75389113d42a2
98 Na64a98ce151e43068a6a190f34ef561a
99 Nf22a7a70ffc4419a8525f6ee0f04ea00
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112140157
101 https://doi.org/10.1007/s13300-019-0568-8
102 schema:sdDatePublished 2022-09-02T16:03
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N715870bb2b974782b602134ce8a3f901
105 schema:url https://doi.org/10.1007/s13300-019-0568-8
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0798577f6f0a455ea13b41f3b8231932 rdf:first sg:person.0710201311.89
110 rdf:rest Nd8efd021131f491f8d10c7e09870b83d
111 N13188497686d4d0aade75389113d42a2 schema:name pubmed_id
112 schema:value 30767173
113 rdf:type schema:PropertyValue
114 N36e9ebcc180548929c684e4199617743 schema:volumeNumber 10
115 rdf:type schema:PublicationVolume
116 N6cb8e42c01e04c91a277fa58cdd2f7a5 rdf:first N9490147ebaa04c68bbdd09d455e07969
117 rdf:rest Na04f0c49193e432096efe4e5e28fb7d0
118 N715870bb2b974782b602134ce8a3f901 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N7553f61fc9ee4f8ba7c7313ca0ae52e2 rdf:first sg:person.0777745537.29
121 rdf:rest Nc55de3a7e55b48199a446ddbf7b909ee
122 N771751e187784939b15d8582a2a37d08 rdf:first sg:person.015445203554.74
123 rdf:rest N7553f61fc9ee4f8ba7c7313ca0ae52e2
124 N915d071411744db3bffaaeb9c6929893 rdf:first sg:person.01360722750.12
125 rdf:rest N99f4ebe6bfa245528d9b3054daf20da7
126 N9490147ebaa04c68bbdd09d455e07969 schema:affiliation grid-institutes:grid.417555.7
127 schema:familyName Liz Zhou
128 schema:givenName Fang
129 rdf:type schema:Person
130 N99f4ebe6bfa245528d9b3054daf20da7 rdf:first sg:person.0723511711.47
131 rdf:rest N6cb8e42c01e04c91a277fa58cdd2f7a5
132 Na04f0c49193e432096efe4e5e28fb7d0 rdf:first sg:person.01341321261.23
133 rdf:rest N0798577f6f0a455ea13b41f3b8231932
134 Na0d071bf2acd462aa50402a2ed369174 rdf:first sg:person.0656205570.62
135 rdf:rest Nfa28e15e35a8474b939ea489fdd8c754
136 Na64a98ce151e43068a6a190f34ef561a schema:name doi
137 schema:value 10.1007/s13300-019-0568-8
138 rdf:type schema:PropertyValue
139 Nc55de3a7e55b48199a446ddbf7b909ee rdf:first sg:person.01050764017.81
140 rdf:rest Na0d071bf2acd462aa50402a2ed369174
141 Nd6d7700cd4ba4cfcb0a08f77317f1b1d schema:issueNumber 2
142 rdf:type schema:PublicationIssue
143 Nd8efd021131f491f8d10c7e09870b83d rdf:first sg:person.0711665445.31
144 rdf:rest N771751e187784939b15d8582a2a37d08
145 Nf22a7a70ffc4419a8525f6ee0f04ea00 schema:name dimensions_id
146 schema:value pub.1112140157
147 rdf:type schema:PropertyValue
148 Nfa28e15e35a8474b939ea489fdd8c754 rdf:first sg:person.01132503075.58
149 rdf:rest rdf:nil
150 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
151 schema:name Medical and Health Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
154 schema:name Clinical Sciences
155 rdf:type schema:DefinedTerm
156 sg:journal.1044057 schema:issn 1869-6953
157 1869-6961
158 schema:name Diabetes Therapy
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.01050764017.81 schema:affiliation grid-institutes:grid.39381.30
162 schema:familyName Hramiak
163 schema:givenName Irene
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050764017.81
165 rdf:type schema:Person
166 sg:person.01132503075.58 schema:affiliation grid-institutes:grid.417169.c
167 schema:familyName Meneghini
168 schema:givenName Luigi
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132503075.58
170 rdf:type schema:Person
171 sg:person.01341321261.23 schema:affiliation grid-institutes:grid.417924.d
172 schema:familyName Bosnyak
173 schema:givenName Zsolt
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341321261.23
175 rdf:type schema:Person
176 sg:person.01360722750.12 schema:affiliation grid-institutes:grid.266100.3
177 schema:familyName Pettus
178 schema:givenName Jeremy
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360722750.12
180 rdf:type schema:Person
181 sg:person.015445203554.74 schema:affiliation grid-institutes:grid.417555.7
182 schema:familyName Jimenez
183 schema:givenName Javier
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445203554.74
185 rdf:type schema:Person
186 sg:person.0656205570.62 schema:affiliation grid-institutes:grid.477010.5
187 schema:familyName Bailey
188 schema:givenName Timothy
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656205570.62
190 rdf:type schema:Person
191 sg:person.0710201311.89 schema:familyName Westerbacka
192 schema:givenName Jukka
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710201311.89
194 rdf:type schema:Person
195 sg:person.0711665445.31 schema:affiliation grid-institutes:grid.417555.7
196 schema:familyName Berria
197 schema:givenName Rachele
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711665445.31
199 rdf:type schema:Person
200 sg:person.0723511711.47 schema:affiliation grid-institutes:grid.411119.d
201 schema:familyName Roussel
202 schema:givenName Ronan
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723511711.47
204 rdf:type schema:Person
205 sg:person.0777745537.29 schema:affiliation grid-institutes:grid.8761.8
206 schema:familyName Eliasson
207 schema:givenName Björn
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777745537.29
209 rdf:type schema:Person
210 sg:pub.10.1007/s13300-019-0567-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112140156
211 https://doi.org/10.1007/s13300-019-0567-9
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nrendo.2014.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051668850
214 https://doi.org/10.1038/nrendo.2014.170
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/1477-7525-11-90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013049175
217 https://doi.org/10.1186/1477-7525-11-90
218 rdf:type schema:CreativeWork
219 grid-institutes:grid.266100.3 schema:alternateName School of Medicine, University of California, San Diego, CA, USA
220 schema:name School of Medicine, University of California, San Diego, CA, USA
221 rdf:type schema:Organization
222 grid-institutes:grid.39381.30 schema:alternateName Lawson Research Institute, University of Western Ontario, London, ON, Canada
223 schema:name Lawson Research Institute, University of Western Ontario, London, ON, Canada
224 rdf:type schema:Organization
225 grid-institutes:grid.411119.d schema:alternateName Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Hopital Bichat, AP-HP, Paris, France
226 schema:name Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Hopital Bichat, AP-HP, Paris, France
227 Inserm U1138, Centre de Recherche Des Cordeliers, Paris, France
228 University Paris Diderot, Sorbonne Paris Cite, Paris, France
229 rdf:type schema:Organization
230 grid-institutes:grid.417169.c schema:alternateName Global Diabetes Program, Parkland Health & Hospital System, Dallas, TX, USA
231 schema:name Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA
232 Global Diabetes Program, Parkland Health & Hospital System, Dallas, TX, USA
233 rdf:type schema:Organization
234 grid-institutes:grid.417555.7 schema:alternateName Sanofi, Bridgewater, NJ, USA
235 schema:name Sanofi, Bridgewater, NJ, USA
236 rdf:type schema:Organization
237 grid-institutes:grid.417924.d schema:alternateName Sanofi, Paris, France
238 schema:name Sanofi, Paris, France
239 rdf:type schema:Organization
240 grid-institutes:grid.477010.5 schema:alternateName AMCR Institute, Escondido, CA, USA
241 schema:name AMCR Institute, Escondido, CA, USA
242 rdf:type schema:Organization
243 grid-institutes:grid.8761.8 schema:alternateName Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Goteborg, Sweden
244 schema:name Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Goteborg, Sweden
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...