Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Seyed Shaker Hashemi, Kabir Sadeghi, Abdorreza Fazeli, Masoud Zarei

ABSTRACT

To estimate the cost of a building prior to the detail design phase, engineers and project managers need suitable tools and guidelines. Steel is an important construction material that is used in high volumes in buildings and has a significant role in the total cost of projects. In this paper, the application of the artificial neural network (ANN) method to predict the quantity of steel used in the steel moment-resisting frame (MRF) structures is presented. First, more than 1100 steel MRF structures were designed applying the changes in the influenced parameters, then these models were transferred to the ANN, and finally, the results of the performed parametric study were analyzed. The obtained results demonstrate that by using the proposed ANN method, the weights of the structures can be estimated with an acceptable accuracy prior to the starting of the design process. Based on the performed parametric study, several sets of required inputs in terms of the parameters of the story height, the span length, the number of stories, the seismicity rate of the construction site, ductility, the class of soil site and column cross section type influenced on the weight per unit area of the structure are submitted. More... »

PAGES

1-13

Journal

TITLE

International Journal of Steel Structures

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z

DOI

http://dx.doi.org/10.1007/s13296-018-0105-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104694470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashemi", 
        "givenName": "Seyed Shaker", 
        "id": "sg:person.012131664027.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131664027.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Civil Engineering, Near East University, 99138, Lefkosa, TRNC, Mersin 10, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadeghi", 
        "givenName": "Kabir", 
        "id": "sg:person.015065205713.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065205713.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fazeli", 
        "givenName": "Abdorreza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zarei", 
        "givenName": "Masoud", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.strusafe.2014.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000178334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88163-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001197038", 
          "https://doi.org/10.1007/978-3-642-88163-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88163-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001197038", 
          "https://doi.org/10.1007/978-3-642-88163-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2016.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004802337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(95)00140-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2015.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007081675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2005.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008791322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2004.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013852407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2014.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018181242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678839", 
          "https://doi.org/10.1007/s40999-016-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678839", 
          "https://doi.org/10.1007/s40999-016-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8667.1990.tb00377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023774249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026429092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02478259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028715170", 
          "https://doi.org/10.1007/bf02478259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2015.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031290603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283673", 
          "https://doi.org/10.1007/s40999-016-0122-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283673", 
          "https://doi.org/10.1007/s40999-016-0122-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0096-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931579", 
          "https://doi.org/10.1007/s40999-016-0096-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0096-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931579", 
          "https://doi.org/10.1007/s40999-016-0096-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2013.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035396794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2009.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036614664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(95)00048-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038368915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.79.8.2554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038762424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2010.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039879915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.supflu.2012.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048139200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03215842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049911052", 
          "https://doi.org/10.1007/bf03215842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14359/429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067278945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada164453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091744995"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "To estimate the cost of a building prior to the detail design phase, engineers and project managers need suitable tools and guidelines. Steel is an important construction material that is used in high volumes in buildings and has a significant role in the total cost of projects. In this paper, the application of the artificial neural network (ANN) method to predict the quantity of steel used in the steel moment-resisting frame (MRF) structures is presented. First, more than 1100 steel MRF structures were designed applying the changes in the influenced parameters, then these models were transferred to the ANN, and finally, the results of the performed parametric study were analyzed. The obtained results demonstrate that by using the proposed ANN method, the weights of the structures can be estimated with an acceptable accuracy prior to the starting of the design process. Based on the performed parametric study, several sets of required inputs in terms of the parameters of the story height, the span length, the number of stories, the seismicity rate of the construction site, ductility, the class of soil site and column cross section type influenced on the weight per unit area of the structure are submitted.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13296-018-0105-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136691", 
        "issn": [
          "1598-2351", 
          "2093-6311"
        ], 
        "name": "International Journal of Steel Structures", 
        "type": "Periodical"
      }
    ], 
    "name": "Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e6ca214117632c1c6056d940acbe7a3ec7dce56a5a92a48483b9cdee165e50b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13296-018-0105-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104694470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13296-018-0105-z", 
      "https://app.dimensions.ai/details/publication/pub.1104694470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13296-018-0105-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      49 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13296-018-0105-z schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author Nc0a42cdb699141899cd09699e99ab70b
4 schema:citation sg:pub.10.1007/978-3-642-88163-3
5 sg:pub.10.1007/bf02478259
6 sg:pub.10.1007/bf03215842
7 sg:pub.10.1007/s40999-016-0075-5
8 sg:pub.10.1007/s40999-016-0096-0
9 sg:pub.10.1007/s40999-016-0122-2
10 https://doi.org/10.1016/0013-7944(95)00140-9
11 https://doi.org/10.1016/0045-7949(95)00048-l
12 https://doi.org/10.1016/j.enggeo.2008.08.005
13 https://doi.org/10.1016/j.engstruct.2005.12.009
14 https://doi.org/10.1016/j.engstruct.2009.02.010
15 https://doi.org/10.1016/j.engstruct.2010.03.010
16 https://doi.org/10.1016/j.engstruct.2013.06.039
17 https://doi.org/10.1016/j.engstruct.2014.01.001
18 https://doi.org/10.1016/j.ijfatigue.2004.12.010
19 https://doi.org/10.1016/j.measurement.2015.08.021
20 https://doi.org/10.1016/j.strusafe.2014.09.002
21 https://doi.org/10.1016/j.supflu.2012.05.006
22 https://doi.org/10.1016/j.tws.2015.04.023
23 https://doi.org/10.1016/j.watres.2016.01.029
24 https://doi.org/10.1073/pnas.79.8.2554
25 https://doi.org/10.1111/j.1467-8667.1990.tb00377.x
26 https://doi.org/10.14359/429
27 https://doi.org/10.21236/ada164453
28 schema:datePublished 2019-02
29 schema:datePublishedReg 2019-02-01
30 schema:description To estimate the cost of a building prior to the detail design phase, engineers and project managers need suitable tools and guidelines. Steel is an important construction material that is used in high volumes in buildings and has a significant role in the total cost of projects. In this paper, the application of the artificial neural network (ANN) method to predict the quantity of steel used in the steel moment-resisting frame (MRF) structures is presented. First, more than 1100 steel MRF structures were designed applying the changes in the influenced parameters, then these models were transferred to the ANN, and finally, the results of the performed parametric study were analyzed. The obtained results demonstrate that by using the proposed ANN method, the weights of the structures can be estimated with an acceptable accuracy prior to the starting of the design process. Based on the performed parametric study, several sets of required inputs in terms of the parameters of the story height, the span length, the number of stories, the seismicity rate of the construction site, ductility, the class of soil site and column cross section type influenced on the weight per unit area of the structure are submitted.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1136691
35 schema:name Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks
36 schema:pagination 1-13
37 schema:productId Nb7f834a9fe93472d8b90449a7221f150
38 Ne142ad0d3da64317be28f70c32992747
39 Nf9af554b1e4847168c9ab43a1878d16c
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104694470
41 https://doi.org/10.1007/s13296-018-0105-z
42 schema:sdDatePublished 2019-04-10T19:05
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N026d8513b1fa422cb247e1a2250b6c9a
45 schema:url http://link.springer.com/10.1007/s13296-018-0105-z
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N026d8513b1fa422cb247e1a2250b6c9a schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N325c16a46e98460db6818181efa1c9c4 rdf:first sg:person.015065205713.10
52 rdf:rest Nde40d68d43ec4886bd3222513b092471
53 N9fff1796825946819d7eb523834eb1c2 schema:name Department of Civil Engineering, Near East University, 99138, Lefkosa, TRNC, Mersin 10, Turkey
54 rdf:type schema:Organization
55 Nb7f834a9fe93472d8b90449a7221f150 schema:name doi
56 schema:value 10.1007/s13296-018-0105-z
57 rdf:type schema:PropertyValue
58 Nc0a42cdb699141899cd09699e99ab70b rdf:first sg:person.012131664027.22
59 rdf:rest N325c16a46e98460db6818181efa1c9c4
60 Nd9b319ef5ab846639a415110d411c910 rdf:first Nf4115c6e0c334e0292af094492c0d62d
61 rdf:rest rdf:nil
62 Nde40d68d43ec4886bd3222513b092471 rdf:first Nededd2dce7d94276a494ce64680f7df1
63 rdf:rest Nd9b319ef5ab846639a415110d411c910
64 Ne142ad0d3da64317be28f70c32992747 schema:name readcube_id
65 schema:value 7e6ca214117632c1c6056d940acbe7a3ec7dce56a5a92a48483b9cdee165e50b
66 rdf:type schema:PropertyValue
67 Nededd2dce7d94276a494ce64680f7df1 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
68 schema:familyName Fazeli
69 schema:givenName Abdorreza
70 rdf:type schema:Person
71 Nf4115c6e0c334e0292af094492c0d62d schema:affiliation https://www.grid.ac/institutes/grid.412491.b
72 schema:familyName Zarei
73 schema:givenName Masoud
74 rdf:type schema:Person
75 Nf9af554b1e4847168c9ab43a1878d16c schema:name dimensions_id
76 schema:value pub.1104694470
77 rdf:type schema:PropertyValue
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
82 schema:name Civil Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1136691 schema:issn 1598-2351
85 2093-6311
86 schema:name International Journal of Steel Structures
87 rdf:type schema:Periodical
88 sg:person.012131664027.22 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
89 schema:familyName Hashemi
90 schema:givenName Seyed Shaker
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131664027.22
92 rdf:type schema:Person
93 sg:person.015065205713.10 schema:affiliation N9fff1796825946819d7eb523834eb1c2
94 schema:familyName Sadeghi
95 schema:givenName Kabir
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065205713.10
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-642-88163-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001197038
99 https://doi.org/10.1007/978-3-642-88163-3
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
102 https://doi.org/10.1007/bf02478259
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf03215842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911052
105 https://doi.org/10.1007/bf03215842
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s40999-016-0075-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678839
108 https://doi.org/10.1007/s40999-016-0075-5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s40999-016-0096-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931579
111 https://doi.org/10.1007/s40999-016-0096-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s40999-016-0122-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283673
114 https://doi.org/10.1007/s40999-016-0122-2
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0013-7944(95)00140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829564
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0045-7949(95)00048-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1038368915
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.enggeo.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026429092
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.engstruct.2005.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008791322
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.engstruct.2009.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036614664
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.engstruct.2010.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039879915
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.engstruct.2013.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035396794
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.engstruct.2014.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018181242
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijfatigue.2004.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013852407
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.measurement.2015.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007081675
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.strusafe.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000178334
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.supflu.2012.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048139200
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.tws.2015.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031290603
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.watres.2016.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004802337
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.79.8.2554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038762424
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1467-8667.1990.tb00377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023774249
147 rdf:type schema:CreativeWork
148 https://doi.org/10.14359/429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067278945
149 rdf:type schema:CreativeWork
150 https://doi.org/10.21236/ada164453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091744995
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
153 schema:name Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...