Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Seyed Shaker Hashemi, Kabir Sadeghi, Abdorreza Fazeli, Masoud Zarei

ABSTRACT

To estimate the cost of a building prior to the detail design phase, engineers and project managers need suitable tools and guidelines. Steel is an important construction material that is used in high volumes in buildings and has a significant role in the total cost of projects. In this paper, the application of the artificial neural network (ANN) method to predict the quantity of steel used in the steel moment-resisting frame (MRF) structures is presented. First, more than 1100 steel MRF structures were designed applying the changes in the influenced parameters, then these models were transferred to the ANN, and finally, the results of the performed parametric study were analyzed. The obtained results demonstrate that by using the proposed ANN method, the weights of the structures can be estimated with an acceptable accuracy prior to the starting of the design process. Based on the performed parametric study, several sets of required inputs in terms of the parameters of the story height, the span length, the number of stories, the seismicity rate of the construction site, ductility, the class of soil site and column cross section type influenced on the weight per unit area of the structure are submitted. More... »

PAGES

1-13

Journal

TITLE

International Journal of Steel Structures

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z

DOI

http://dx.doi.org/10.1007/s13296-018-0105-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104694470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashemi", 
        "givenName": "Seyed Shaker", 
        "id": "sg:person.012131664027.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131664027.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Civil Engineering, Near East University, 99138, Lefkosa, TRNC, Mersin 10, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadeghi", 
        "givenName": "Kabir", 
        "id": "sg:person.015065205713.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065205713.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fazeli", 
        "givenName": "Abdorreza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zarei", 
        "givenName": "Masoud", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.strusafe.2014.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000178334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88163-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001197038", 
          "https://doi.org/10.1007/978-3-642-88163-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88163-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001197038", 
          "https://doi.org/10.1007/978-3-642-88163-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2016.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004802337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(95)00140-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2015.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007081675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2005.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008791322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2004.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013852407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2014.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018181242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678839", 
          "https://doi.org/10.1007/s40999-016-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678839", 
          "https://doi.org/10.1007/s40999-016-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8667.1990.tb00377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023774249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026429092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02478259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028715170", 
          "https://doi.org/10.1007/bf02478259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2015.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031290603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283673", 
          "https://doi.org/10.1007/s40999-016-0122-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283673", 
          "https://doi.org/10.1007/s40999-016-0122-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0096-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931579", 
          "https://doi.org/10.1007/s40999-016-0096-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40999-016-0096-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931579", 
          "https://doi.org/10.1007/s40999-016-0096-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2013.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035396794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2009.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036614664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(95)00048-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038368915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.79.8.2554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038762424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2010.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039879915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.supflu.2012.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048139200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03215842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049911052", 
          "https://doi.org/10.1007/bf03215842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14359/429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067278945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada164453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091744995"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "To estimate the cost of a building prior to the detail design phase, engineers and project managers need suitable tools and guidelines. Steel is an important construction material that is used in high volumes in buildings and has a significant role in the total cost of projects. In this paper, the application of the artificial neural network (ANN) method to predict the quantity of steel used in the steel moment-resisting frame (MRF) structures is presented. First, more than 1100 steel MRF structures were designed applying the changes in the influenced parameters, then these models were transferred to the ANN, and finally, the results of the performed parametric study were analyzed. The obtained results demonstrate that by using the proposed ANN method, the weights of the structures can be estimated with an acceptable accuracy prior to the starting of the design process. Based on the performed parametric study, several sets of required inputs in terms of the parameters of the story height, the span length, the number of stories, the seismicity rate of the construction site, ductility, the class of soil site and column cross section type influenced on the weight per unit area of the structure are submitted.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13296-018-0105-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136691", 
        "issn": [
          "1598-2351", 
          "2093-6311"
        ], 
        "name": "International Journal of Steel Structures", 
        "type": "Periodical"
      }
    ], 
    "name": "Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e6ca214117632c1c6056d940acbe7a3ec7dce56a5a92a48483b9cdee165e50b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13296-018-0105-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104694470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13296-018-0105-z", 
      "https://app.dimensions.ai/details/publication/pub.1104694470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13296-018-0105-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13296-018-0105-z'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      49 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13296-018-0105-z schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N785141425ab7436299aa829ef256aff7
4 schema:citation sg:pub.10.1007/978-3-642-88163-3
5 sg:pub.10.1007/bf02478259
6 sg:pub.10.1007/bf03215842
7 sg:pub.10.1007/s40999-016-0075-5
8 sg:pub.10.1007/s40999-016-0096-0
9 sg:pub.10.1007/s40999-016-0122-2
10 https://doi.org/10.1016/0013-7944(95)00140-9
11 https://doi.org/10.1016/0045-7949(95)00048-l
12 https://doi.org/10.1016/j.enggeo.2008.08.005
13 https://doi.org/10.1016/j.engstruct.2005.12.009
14 https://doi.org/10.1016/j.engstruct.2009.02.010
15 https://doi.org/10.1016/j.engstruct.2010.03.010
16 https://doi.org/10.1016/j.engstruct.2013.06.039
17 https://doi.org/10.1016/j.engstruct.2014.01.001
18 https://doi.org/10.1016/j.ijfatigue.2004.12.010
19 https://doi.org/10.1016/j.measurement.2015.08.021
20 https://doi.org/10.1016/j.strusafe.2014.09.002
21 https://doi.org/10.1016/j.supflu.2012.05.006
22 https://doi.org/10.1016/j.tws.2015.04.023
23 https://doi.org/10.1016/j.watres.2016.01.029
24 https://doi.org/10.1073/pnas.79.8.2554
25 https://doi.org/10.1111/j.1467-8667.1990.tb00377.x
26 https://doi.org/10.14359/429
27 https://doi.org/10.21236/ada164453
28 schema:datePublished 2019-02
29 schema:datePublishedReg 2019-02-01
30 schema:description To estimate the cost of a building prior to the detail design phase, engineers and project managers need suitable tools and guidelines. Steel is an important construction material that is used in high volumes in buildings and has a significant role in the total cost of projects. In this paper, the application of the artificial neural network (ANN) method to predict the quantity of steel used in the steel moment-resisting frame (MRF) structures is presented. First, more than 1100 steel MRF structures were designed applying the changes in the influenced parameters, then these models were transferred to the ANN, and finally, the results of the performed parametric study were analyzed. The obtained results demonstrate that by using the proposed ANN method, the weights of the structures can be estimated with an acceptable accuracy prior to the starting of the design process. Based on the performed parametric study, several sets of required inputs in terms of the parameters of the story height, the span length, the number of stories, the seismicity rate of the construction site, ductility, the class of soil site and column cross section type influenced on the weight per unit area of the structure are submitted.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1136691
35 schema:name Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks
36 schema:pagination 1-13
37 schema:productId N0de9ec588c504377aee549d9b1b83af5
38 N6e2ac893fccc487485079779f95ab88a
39 Nb8554e36907944b8b45a8ac41fe950ce
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104694470
41 https://doi.org/10.1007/s13296-018-0105-z
42 schema:sdDatePublished 2019-04-10T19:05
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N9281c3fdb85e4376ae2eb85b5542ed52
45 schema:url http://link.springer.com/10.1007/s13296-018-0105-z
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0132c0196c1d4c2180189c16d3705bb0 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
50 schema:familyName Zarei
51 schema:givenName Masoud
52 rdf:type schema:Person
53 N0de9ec588c504377aee549d9b1b83af5 schema:name doi
54 schema:value 10.1007/s13296-018-0105-z
55 rdf:type schema:PropertyValue
56 N5b46421842dc4297894d10934242d153 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
57 schema:familyName Fazeli
58 schema:givenName Abdorreza
59 rdf:type schema:Person
60 N6e2ac893fccc487485079779f95ab88a schema:name readcube_id
61 schema:value 7e6ca214117632c1c6056d940acbe7a3ec7dce56a5a92a48483b9cdee165e50b
62 rdf:type schema:PropertyValue
63 N7427fd37ba514fbb8a59f90262481c0e rdf:first N5b46421842dc4297894d10934242d153
64 rdf:rest N98392b9280b045fd84df577e371bf337
65 N785141425ab7436299aa829ef256aff7 rdf:first sg:person.012131664027.22
66 rdf:rest Ndd1b051ec86a45e1a20355b79373fbee
67 N9281c3fdb85e4376ae2eb85b5542ed52 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N98392b9280b045fd84df577e371bf337 rdf:first N0132c0196c1d4c2180189c16d3705bb0
70 rdf:rest rdf:nil
71 Na038b0e1c3df4005af5070554d347e03 schema:name Department of Civil Engineering, Near East University, 99138, Lefkosa, TRNC, Mersin 10, Turkey
72 rdf:type schema:Organization
73 Nb8554e36907944b8b45a8ac41fe950ce schema:name dimensions_id
74 schema:value pub.1104694470
75 rdf:type schema:PropertyValue
76 Ndd1b051ec86a45e1a20355b79373fbee rdf:first sg:person.015065205713.10
77 rdf:rest N7427fd37ba514fbb8a59f90262481c0e
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
82 schema:name Civil Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1136691 schema:issn 1598-2351
85 2093-6311
86 schema:name International Journal of Steel Structures
87 rdf:type schema:Periodical
88 sg:person.012131664027.22 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
89 schema:familyName Hashemi
90 schema:givenName Seyed Shaker
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131664027.22
92 rdf:type schema:Person
93 sg:person.015065205713.10 schema:affiliation Na038b0e1c3df4005af5070554d347e03
94 schema:familyName Sadeghi
95 schema:givenName Kabir
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065205713.10
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-642-88163-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001197038
99 https://doi.org/10.1007/978-3-642-88163-3
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
102 https://doi.org/10.1007/bf02478259
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf03215842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911052
105 https://doi.org/10.1007/bf03215842
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s40999-016-0075-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678839
108 https://doi.org/10.1007/s40999-016-0075-5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s40999-016-0096-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931579
111 https://doi.org/10.1007/s40999-016-0096-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s40999-016-0122-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283673
114 https://doi.org/10.1007/s40999-016-0122-2
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0013-7944(95)00140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829564
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0045-7949(95)00048-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1038368915
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.enggeo.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026429092
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.engstruct.2005.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008791322
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.engstruct.2009.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036614664
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.engstruct.2010.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039879915
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.engstruct.2013.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035396794
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.engstruct.2014.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018181242
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijfatigue.2004.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013852407
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.measurement.2015.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007081675
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.strusafe.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000178334
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.supflu.2012.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048139200
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.tws.2015.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031290603
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.watres.2016.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004802337
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.79.8.2554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038762424
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1467-8667.1990.tb00377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023774249
147 rdf:type schema:CreativeWork
148 https://doi.org/10.14359/429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067278945
149 rdf:type schema:CreativeWork
150 https://doi.org/10.21236/ada164453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091744995
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
153 schema:name Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box 75169-13817, Bushehr, Iran
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...