Genetic variations at microRNA and processing genes and risk of oral cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04

AUTHORS

Roshni Roy, Navonil De Sarkar, Sandip Ghose, Ranjan R. Paul, Mousumi Pal, Chandrika Bhattacharya, Shweta K Roy Chowdhury, Saurabh Ghosh, Bidyut Roy

ABSTRACT

Genetic variations at microRNA and microRNA processing genes are known to confer risk of cancer in different populations. Here, we studied variations at eight microRNA (miRNA) and four miRNA processing genes in 452 controls and 451 oral cancer patients by TaqMan genotyping assays. Variant allele-containing genotypes at mir-196a2 and variant allele homozygous genotype at Ran increased the risk of cancer significantly [adjusted odds ratio (OR) (95% confidence interval (CI)) = 1.3 (1-1.7) and 2.3 (1.1-4.6), respectively]. Conversely, variant allele-containing genotypes at mir-34b and variant allele homozygous genotype at Gemin3 reduced the risk of cancer significantly [adjusted OR (95% CI) = 0.7 (0.5-0.9) and 0.6 (0.4-1), respectively]. Cumulative risk was also increased by three times with increase in the number of risk alleles at these four loci. In tobacco stratified analysis, variant allele homozygous genotypes at mir-29a and Ran increased [adjusted OR (95% CI) = 1.5 (1-2.3) and 3 (1.1-8.4) respectively], while variant allele-containing genotypes at mir-34b decreased [adjusted OR (95% CI) = 0.6 (0.4-0.9)] the risk of cancer significantly. Thus, genetic variation at miRNA and processing genes altered the risk of oral cancer in this population thereby corroborating studies in other populations. However, it is necessary to validate this result in different Indian sub populations with larger sample sizes and examine the effect of these variations in tumour tissues to explain the mechanism of risk alteration. More... »

PAGES

3409-3414

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3

DOI

http://dx.doi.org/10.1007/s13277-013-1450-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024705138

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24297336


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mouth Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Roshni", 
        "id": "sg:person.01212462234.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212462234.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Sarkar", 
        "givenName": "Navonil", 
        "id": "sg:person.0765314660.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765314660.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghose", 
        "givenName": "Sandip", 
        "id": "sg:person.01326710634.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326710634.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paul", 
        "givenName": "Ranjan R.", 
        "id": "sg:person.01040517437.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040517437.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pal", 
        "givenName": "Mousumi", 
        "id": "sg:person.0610042437.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610042437.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Institute of Bio Medical Genomics, 741251, Kalyani, Nadia, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharya", 
        "givenName": "Chandrika", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Institute of Bio Medical Genomics, 741251, Kalyani, Nadia, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chowdhury", 
        "givenName": "Shweta K Roy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Saurabh", 
        "id": "sg:person.015447717122.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447717122.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Bidyut", 
        "id": "sg:person.01233363655.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233363655.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mc.20588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000148066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mc.20588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000148066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.25323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005609757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.25323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005609757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci34934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007424360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-2166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008080923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/16.3.1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012912024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)66658-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014629166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4061/2011/431246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014696849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1149460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015783172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-10-0657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2009.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019143985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0027840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020173252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-013-0187-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020503646", 
          "https://doi.org/10.1007/s10552-013-0187-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.22547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025413543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026011156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026011156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb0705-569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028825262", 
          "https://doi.org/10.1038/nsmb0705-569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb0705-569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028825262", 
          "https://doi.org/10.1038/nsmb0705-569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5037/jomr.2013.4102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033743013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/701932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034179263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840562", 
          "https://doi.org/10.1038/nrm1644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840562", 
          "https://doi.org/10.1038/nrm1644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/oncsis.2013.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037942734", 
          "https://doi.org/10.1038/oncsis.2013.20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/biom3020287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039261250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341870", 
          "https://doi.org/10.1038/nature02871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341870", 
          "https://doi.org/10.1038/nature02871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.11114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044329888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0707628104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047085275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db09-1386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049929865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13277-013-0736-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052019184", 
          "https://doi.org/10.1007/s13277-013-0736-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13277-013-0736-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052019184", 
          "https://doi.org/10.1007/s13277-013-0736-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-07-5194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052794890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-08-0135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053606965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077226385", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078616561", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-04", 
    "datePublishedReg": "2014-04-01", 
    "description": "Genetic variations at microRNA and microRNA processing genes are known to confer risk of cancer in different populations. Here, we studied variations at eight microRNA (miRNA) and four miRNA processing genes in 452 controls and 451 oral cancer patients by TaqMan genotyping assays. Variant allele-containing genotypes at mir-196a2 and variant allele homozygous genotype at Ran increased the risk of cancer significantly [adjusted odds ratio (OR) (95% confidence interval (CI))\u2009= 1.3 (1-1.7) and 2.3 (1.1-4.6), respectively]. Conversely, variant allele-containing genotypes at mir-34b and variant allele homozygous genotype at Gemin3 reduced the risk of cancer significantly [adjusted OR (95% CI)\u2009= 0.7 (0.5-0.9) and 0.6 (0.4-1), respectively]. Cumulative risk was also increased by three times with increase in the number of risk alleles at these four loci. In tobacco stratified analysis, variant allele homozygous genotypes at mir-29a and Ran increased [adjusted OR (95% CI)\u2009= 1.5 (1-2.3) and 3 (1.1-8.4) respectively], while variant allele-containing genotypes at mir-34b decreased [adjusted OR (95% CI)\u2009= 0.6 (0.4-0.9)] the risk of cancer significantly. Thus, genetic variation at miRNA and processing genes altered the risk of oral cancer in this population thereby corroborating studies in other populations. However, it is necessary to validate this result in different Indian sub populations with larger sample sizes and examine the effect of these variations in tumour tissues to explain the mechanism of risk alteration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13277-013-1450-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1091981", 
        "issn": [
          "1010-4283", 
          "1423-0380"
        ], 
        "name": "Tumor Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Genetic variations at microRNA and processing genes and risk of oral cancer", 
    "pagination": "3409-3414", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75b267581fb4d108872b3a2712a95c6b2ff45dc10d7db6c66f8164953c5cfd58"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24297336"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8409922"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13277-013-1450-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024705138"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13277-013-1450-3", 
      "https://app.dimensions.ai/details/publication/pub.1024705138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13277-013-1450-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'


 

This table displays all metadata directly associated to this object as RDF triples.

279 TRIPLES      21 PREDICATES      72 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13277-013-1450-3 schema:about N0d0cee3c13134d34a941cd85138b81cf
2 N11a1dd529e54490e9360fd4cf3581c61
3 N3110dc2b017b4212a756018836c3aa67
4 N55d1043401a44f6ebd1967286af387b7
5 N5f22ed2a4af54bf18d40720fa37cf623
6 N6c4b5873ef3346ff8ac5a5bb9c945b75
7 Na38f399c5b3840ffb8dd12afaf230c5a
8 Nb9a97c89fe814984a7f6c4442b6793a1
9 Nc167475625cc47bab02157ee55478c66
10 Ndbd9a8500a794d2c835dc19c63f4ce50
11 Ne9245ffe44254b8cb7e39123548a83ef
12 Neba8b247eaea4dc7b1c8e5c359a79540
13 Nee0017dfc93840e3b0dc250604077544
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N4bb3e8218ce549eda5445271b1002c5b
17 schema:citation sg:pub.10.1007/s10552-013-0187-z
18 sg:pub.10.1007/s13277-013-0736-9
19 sg:pub.10.1038/nature02871
20 sg:pub.10.1038/nrm1644
21 sg:pub.10.1038/nsmb0705-569
22 sg:pub.10.1038/oncsis.2013.20
23 https://app.dimensions.ai/details/publication/pub.1077226385
24 https://app.dimensions.ai/details/publication/pub.1078616561
25 https://doi.org/10.1002/cncr.25323
26 https://doi.org/10.1002/ijc.11114
27 https://doi.org/10.1002/ijc.22547
28 https://doi.org/10.1002/ijc.25342
29 https://doi.org/10.1002/mc.20588
30 https://doi.org/10.1016/j.ejca.2009.09.014
31 https://doi.org/10.1016/s0140-6736(05)66658-5
32 https://doi.org/10.1073/pnas.0707628104
33 https://doi.org/10.1086/519795
34 https://doi.org/10.1093/nar/16.3.1215
35 https://doi.org/10.1126/science.1149460
36 https://doi.org/10.1155/2012/701932
37 https://doi.org/10.1158/0008-5472.can-07-5194
38 https://doi.org/10.1158/1078-0432.ccr-09-2166
39 https://doi.org/10.1158/1078-0432.ccr-10-0657
40 https://doi.org/10.1158/1940-6207.capr-08-0135
41 https://doi.org/10.1172/jci34934
42 https://doi.org/10.1371/journal.pone.0027840
43 https://doi.org/10.2337/db09-1386
44 https://doi.org/10.3390/biom3020287
45 https://doi.org/10.4061/2011/431246
46 https://doi.org/10.5037/jomr.2013.4102
47 schema:datePublished 2014-04
48 schema:datePublishedReg 2014-04-01
49 schema:description Genetic variations at microRNA and microRNA processing genes are known to confer risk of cancer in different populations. Here, we studied variations at eight microRNA (miRNA) and four miRNA processing genes in 452 controls and 451 oral cancer patients by TaqMan genotyping assays. Variant allele-containing genotypes at mir-196a2 and variant allele homozygous genotype at Ran increased the risk of cancer significantly [adjusted odds ratio (OR) (95% confidence interval (CI)) = 1.3 (1-1.7) and 2.3 (1.1-4.6), respectively]. Conversely, variant allele-containing genotypes at mir-34b and variant allele homozygous genotype at Gemin3 reduced the risk of cancer significantly [adjusted OR (95% CI) = 0.7 (0.5-0.9) and 0.6 (0.4-1), respectively]. Cumulative risk was also increased by three times with increase in the number of risk alleles at these four loci. In tobacco stratified analysis, variant allele homozygous genotypes at mir-29a and Ran increased [adjusted OR (95% CI) = 1.5 (1-2.3) and 3 (1.1-8.4) respectively], while variant allele-containing genotypes at mir-34b decreased [adjusted OR (95% CI) = 0.6 (0.4-0.9)] the risk of cancer significantly. Thus, genetic variation at miRNA and processing genes altered the risk of oral cancer in this population thereby corroborating studies in other populations. However, it is necessary to validate this result in different Indian sub populations with larger sample sizes and examine the effect of these variations in tumour tissues to explain the mechanism of risk alteration.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N8071f06b502b4545b928c9a1911f2507
54 Na963bbfd45d84d2590d5d6c96cedbc25
55 sg:journal.1091981
56 schema:name Genetic variations at microRNA and processing genes and risk of oral cancer
57 schema:pagination 3409-3414
58 schema:productId N027b5159414d47e09278ad57a8b5ba88
59 N7b3b3102425748b2a6f549de5dea8262
60 N96fa59d632e241f790c34de9d6ad3a4d
61 Nbe921ec6be0e49efbbbf9dacfb539aa8
62 Neea1a83bfe6343478cfb0aa4712a4930
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024705138
64 https://doi.org/10.1007/s13277-013-1450-3
65 schema:sdDatePublished 2019-04-11T01:09
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N6522b29687de465c93f0e9d23d1c8d3d
68 schema:url http://link.springer.com/10.1007%2Fs13277-013-1450-3
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N006b691f1c8a4d8d9db16dfdedc008f2 rdf:first sg:person.01326710634.65
73 rdf:rest N35b4eb66ee0648a89398e3eebaa89c4f
74 N027b5159414d47e09278ad57a8b5ba88 schema:name readcube_id
75 schema:value 75b267581fb4d108872b3a2712a95c6b2ff45dc10d7db6c66f8164953c5cfd58
76 rdf:type schema:PropertyValue
77 N03a44a53ded74599a7f3f63e75afd6be schema:name Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India
78 rdf:type schema:Organization
79 N0d0cee3c13134d34a941cd85138b81cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Genotype
81 rdf:type schema:DefinedTerm
82 N11a1dd529e54490e9360fd4cf3581c61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Middle Aged
84 rdf:type schema:DefinedTerm
85 N2d0a9d2c4a8f41e88e4bb6efdf220628 schema:affiliation Nb7a231c1f57c454499d0ffae9e1e9925
86 schema:familyName Chowdhury
87 schema:givenName Shweta K Roy
88 rdf:type schema:Person
89 N3110dc2b017b4212a756018836c3aa67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Risk
91 rdf:type schema:DefinedTerm
92 N319485b4e2e04898b5fe5ae49f8b6bdb rdf:first N2d0a9d2c4a8f41e88e4bb6efdf220628
93 rdf:rest Ne309fc4cb4ca439693eb3431778e32f0
94 N331d2a6704b64f18aeb22303fcc31092 schema:name National Institute of Bio Medical Genomics, 741251, Kalyani, Nadia, West Bengal, India
95 rdf:type schema:Organization
96 N35b4eb66ee0648a89398e3eebaa89c4f rdf:first sg:person.01040517437.95
97 rdf:rest N894427c37d184783b4b7c9fe2628d7a0
98 N4020d5615744441cb2f47e3e5b86238a schema:name Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India
99 rdf:type schema:Organization
100 N47490baf98504efeb91f4aaeb7127d73 rdf:first Ncdd4b3e585fb4769b8d26260687272af
101 rdf:rest N319485b4e2e04898b5fe5ae49f8b6bdb
102 N4bb3e8218ce549eda5445271b1002c5b rdf:first sg:person.01212462234.74
103 rdf:rest Nf2e5070bbab94800ac55b74b1df16674
104 N55d1043401a44f6ebd1967286af387b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Polymorphism, Single Nucleotide
106 rdf:type schema:DefinedTerm
107 N5f22ed2a4af54bf18d40720fa37cf623 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Aged
109 rdf:type schema:DefinedTerm
110 N6522b29687de465c93f0e9d23d1c8d3d schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N6c4b5873ef3346ff8ac5a5bb9c945b75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Female
114 rdf:type schema:DefinedTerm
115 N7b3b3102425748b2a6f549de5dea8262 schema:name pubmed_id
116 schema:value 24297336
117 rdf:type schema:PropertyValue
118 N8071f06b502b4545b928c9a1911f2507 schema:volumeNumber 35
119 rdf:type schema:PublicationVolume
120 N894427c37d184783b4b7c9fe2628d7a0 rdf:first sg:person.0610042437.00
121 rdf:rest N47490baf98504efeb91f4aaeb7127d73
122 N96fa59d632e241f790c34de9d6ad3a4d schema:name doi
123 schema:value 10.1007/s13277-013-1450-3
124 rdf:type schema:PropertyValue
125 N9802084be2d44e8086d55ba6af1e256f schema:name Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India
126 rdf:type schema:Organization
127 Na38f399c5b3840ffb8dd12afaf230c5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name MicroRNAs
129 rdf:type schema:DefinedTerm
130 Na963bbfd45d84d2590d5d6c96cedbc25 schema:issueNumber 4
131 rdf:type schema:PublicationIssue
132 Nb7a231c1f57c454499d0ffae9e1e9925 schema:name National Institute of Bio Medical Genomics, 741251, Kalyani, Nadia, West Bengal, India
133 rdf:type schema:Organization
134 Nb9a97c89fe814984a7f6c4442b6793a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Male
136 rdf:type schema:DefinedTerm
137 Nbe921ec6be0e49efbbbf9dacfb539aa8 schema:name nlm_unique_id
138 schema:value 8409922
139 rdf:type schema:PropertyValue
140 Nc167475625cc47bab02157ee55478c66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 Ncdd4b3e585fb4769b8d26260687272af schema:affiliation N331d2a6704b64f18aeb22303fcc31092
144 schema:familyName Bhattacharya
145 schema:givenName Chandrika
146 rdf:type schema:Person
147 Nda07453cbf054c339dcb154a05af7552 rdf:first sg:person.01233363655.77
148 rdf:rest rdf:nil
149 Ndbd9a8500a794d2c835dc19c63f4ce50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Mouth Neoplasms
151 rdf:type schema:DefinedTerm
152 Ne309fc4cb4ca439693eb3431778e32f0 rdf:first sg:person.015447717122.15
153 rdf:rest Nda07453cbf054c339dcb154a05af7552
154 Ne9245ffe44254b8cb7e39123548a83ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Genetic Predisposition to Disease
156 rdf:type schema:DefinedTerm
157 Neba8b247eaea4dc7b1c8e5c359a79540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Adult
159 rdf:type schema:DefinedTerm
160 Nee0017dfc93840e3b0dc250604077544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Genetic Variation
162 rdf:type schema:DefinedTerm
163 Neea1a83bfe6343478cfb0aa4712a4930 schema:name dimensions_id
164 schema:value pub.1024705138
165 rdf:type schema:PropertyValue
166 Nf2e5070bbab94800ac55b74b1df16674 rdf:first sg:person.0765314660.07
167 rdf:rest N006b691f1c8a4d8d9db16dfdedc008f2
168 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
169 schema:name Biological Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
172 schema:name Genetics
173 rdf:type schema:DefinedTerm
174 sg:journal.1091981 schema:issn 1010-4283
175 1423-0380
176 schema:name Tumor Biology
177 rdf:type schema:Periodical
178 sg:person.01040517437.95 schema:affiliation N4020d5615744441cb2f47e3e5b86238a
179 schema:familyName Paul
180 schema:givenName Ranjan R.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040517437.95
182 rdf:type schema:Person
183 sg:person.01212462234.74 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
184 schema:familyName Roy
185 schema:givenName Roshni
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212462234.74
187 rdf:type schema:Person
188 sg:person.01233363655.77 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
189 schema:familyName Roy
190 schema:givenName Bidyut
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233363655.77
192 rdf:type schema:Person
193 sg:person.01326710634.65 schema:affiliation N9802084be2d44e8086d55ba6af1e256f
194 schema:familyName Ghose
195 schema:givenName Sandip
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326710634.65
197 rdf:type schema:Person
198 sg:person.015447717122.15 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
199 schema:familyName Ghosh
200 schema:givenName Saurabh
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447717122.15
202 rdf:type schema:Person
203 sg:person.0610042437.00 schema:affiliation N03a44a53ded74599a7f3f63e75afd6be
204 schema:familyName Pal
205 schema:givenName Mousumi
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610042437.00
207 rdf:type schema:Person
208 sg:person.0765314660.07 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
209 schema:familyName De Sarkar
210 schema:givenName Navonil
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765314660.07
212 rdf:type schema:Person
213 sg:pub.10.1007/s10552-013-0187-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020503646
214 https://doi.org/10.1007/s10552-013-0187-z
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s13277-013-0736-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052019184
217 https://doi.org/10.1007/s13277-013-0736-9
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nature02871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341870
220 https://doi.org/10.1038/nature02871
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nrm1644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035840562
223 https://doi.org/10.1038/nrm1644
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nsmb0705-569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028825262
226 https://doi.org/10.1038/nsmb0705-569
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/oncsis.2013.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037942734
229 https://doi.org/10.1038/oncsis.2013.20
230 rdf:type schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1077226385 schema:CreativeWork
232 https://app.dimensions.ai/details/publication/pub.1078616561 schema:CreativeWork
233 https://doi.org/10.1002/cncr.25323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005609757
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1002/ijc.11114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044329888
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1002/ijc.22547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025413543
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1002/ijc.25342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026011156
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1002/mc.20588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000148066
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.ejca.2009.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019143985
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/s0140-6736(05)66658-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014629166
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1073/pnas.0707628104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047085275
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/nar/16.3.1215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012912024
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.1149460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015783172
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1155/2012/701932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034179263
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1158/0008-5472.can-07-5194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052794890
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1158/1078-0432.ccr-09-2166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008080923
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1158/1078-0432.ccr-10-0657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672013
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1158/1940-6207.capr-08-0135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053606965
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1172/jci34934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007424360
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1371/journal.pone.0027840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020173252
268 rdf:type schema:CreativeWork
269 https://doi.org/10.2337/db09-1386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049929865
270 rdf:type schema:CreativeWork
271 https://doi.org/10.3390/biom3020287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039261250
272 rdf:type schema:CreativeWork
273 https://doi.org/10.4061/2011/431246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014696849
274 rdf:type schema:CreativeWork
275 https://doi.org/10.5037/jomr.2013.4102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033743013
276 rdf:type schema:CreativeWork
277 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
278 schema:name Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India
279 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...