Ontology type: schema:ScholarlyArticle
2014-04
AUTHORSRoshni Roy, Navonil De Sarkar, Sandip Ghose, Ranjan R. Paul, Mousumi Pal, Chandrika Bhattacharya, Shweta K Roy Chowdhury, Saurabh Ghosh, Bidyut Roy
ABSTRACTGenetic variations at microRNA and microRNA processing genes are known to confer risk of cancer in different populations. Here, we studied variations at eight microRNA (miRNA) and four miRNA processing genes in 452 controls and 451 oral cancer patients by TaqMan genotyping assays. Variant allele-containing genotypes at mir-196a2 and variant allele homozygous genotype at Ran increased the risk of cancer significantly [adjusted odds ratio (OR) (95% confidence interval (CI)) = 1.3 (1-1.7) and 2.3 (1.1-4.6), respectively]. Conversely, variant allele-containing genotypes at mir-34b and variant allele homozygous genotype at Gemin3 reduced the risk of cancer significantly [adjusted OR (95% CI) = 0.7 (0.5-0.9) and 0.6 (0.4-1), respectively]. Cumulative risk was also increased by three times with increase in the number of risk alleles at these four loci. In tobacco stratified analysis, variant allele homozygous genotypes at mir-29a and Ran increased [adjusted OR (95% CI) = 1.5 (1-2.3) and 3 (1.1-8.4) respectively], while variant allele-containing genotypes at mir-34b decreased [adjusted OR (95% CI) = 0.6 (0.4-0.9)] the risk of cancer significantly. Thus, genetic variation at miRNA and processing genes altered the risk of oral cancer in this population thereby corroborating studies in other populations. However, it is necessary to validate this result in different Indian sub populations with larger sample sizes and examine the effect of these variations in tumour tissues to explain the mechanism of risk alteration. More... »
PAGES3409-3414
http://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3
DOIhttp://dx.doi.org/10.1007/s13277-013-1450-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024705138
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/24297336
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adult",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genetic Predisposition to Disease",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genetic Variation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genotype",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "MicroRNAs",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mouth Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Polymorphism, Single Nucleotide",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Risk",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Indian Statistical Institute",
"id": "https://www.grid.ac/institutes/grid.39953.35",
"name": [
"Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Roy",
"givenName": "Roshni",
"id": "sg:person.01212462234.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212462234.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Indian Statistical Institute",
"id": "https://www.grid.ac/institutes/grid.39953.35",
"name": [
"Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
],
"type": "Organization"
},
"familyName": "De Sarkar",
"givenName": "Navonil",
"id": "sg:person.0765314660.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765314660.07"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Ghose",
"givenName": "Sandip",
"id": "sg:person.01326710634.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326710634.65"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Paul",
"givenName": "Ranjan R.",
"id": "sg:person.01040517437.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040517437.95"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, 700114, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Pal",
"givenName": "Mousumi",
"id": "sg:person.0610042437.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610042437.00"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"National Institute of Bio Medical Genomics, 741251, Kalyani, Nadia, West Bengal, India"
],
"type": "Organization"
},
"familyName": "Bhattacharya",
"givenName": "Chandrika",
"type": "Person"
},
{
"affiliation": {
"name": [
"National Institute of Bio Medical Genomics, 741251, Kalyani, Nadia, West Bengal, India"
],
"type": "Organization"
},
"familyName": "Chowdhury",
"givenName": "Shweta K Roy",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Indian Statistical Institute",
"id": "https://www.grid.ac/institutes/grid.39953.35",
"name": [
"Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Ghosh",
"givenName": "Saurabh",
"id": "sg:person.015447717122.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447717122.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Indian Statistical Institute",
"id": "https://www.grid.ac/institutes/grid.39953.35",
"name": [
"Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, 700108, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Roy",
"givenName": "Bidyut",
"id": "sg:person.01233363655.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233363655.77"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1002/mc.20588",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000148066"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mc.20588",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000148066"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cncr.25323",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005609757"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cncr.25323",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005609757"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1172/jci34934",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007424360"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1078-0432.ccr-09-2166",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008080923"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/16.3.1215",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012912024"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0140-6736(05)66658-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014629166"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4061/2011/431246",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014696849"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1149460",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015783172"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1078-0432.ccr-10-0657",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018672013"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/519795",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019061180"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejca.2009.09.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019143985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0027840",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020173252"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10552-013-0187-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020503646",
"https://doi.org/10.1007/s10552-013-0187-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ijc.22547",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025413543"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ijc.25342",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026011156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ijc.25342",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026011156"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nsmb0705-569",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028825262",
"https://doi.org/10.1038/nsmb0705-569"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nsmb0705-569",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028825262",
"https://doi.org/10.1038/nsmb0705-569"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5037/jomr.2013.4102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033743013"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2012/701932",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034179263"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrm1644",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035840562",
"https://doi.org/10.1038/nrm1644"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrm1644",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035840562",
"https://doi.org/10.1038/nrm1644"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/oncsis.2013.20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037942734",
"https://doi.org/10.1038/oncsis.2013.20"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3390/biom3020287",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039261250"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02871",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043341870",
"https://doi.org/10.1038/nature02871"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02871",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043341870",
"https://doi.org/10.1038/nature02871"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ijc.11114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044329888"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0707628104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047085275"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2337/db09-1386",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049929865"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13277-013-0736-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052019184",
"https://doi.org/10.1007/s13277-013-0736-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13277-013-0736-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052019184",
"https://doi.org/10.1007/s13277-013-0736-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/0008-5472.can-07-5194",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052794890"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1940-6207.capr-08-0135",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053606965"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1077226385",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1078616561",
"type": "CreativeWork"
}
],
"datePublished": "2014-04",
"datePublishedReg": "2014-04-01",
"description": "Genetic variations at microRNA and microRNA processing genes are known to confer risk of cancer in different populations. Here, we studied variations at eight microRNA (miRNA) and four miRNA processing genes in 452 controls and 451 oral cancer patients by TaqMan genotyping assays. Variant allele-containing genotypes at mir-196a2 and variant allele homozygous genotype at Ran increased the risk of cancer significantly [adjusted odds ratio (OR) (95% confidence interval (CI))\u2009= 1.3 (1-1.7) and 2.3 (1.1-4.6), respectively]. Conversely, variant allele-containing genotypes at mir-34b and variant allele homozygous genotype at Gemin3 reduced the risk of cancer significantly [adjusted OR (95% CI)\u2009= 0.7 (0.5-0.9) and 0.6 (0.4-1), respectively]. Cumulative risk was also increased by three times with increase in the number of risk alleles at these four loci. In tobacco stratified analysis, variant allele homozygous genotypes at mir-29a and Ran increased [adjusted OR (95% CI)\u2009= 1.5 (1-2.3) and 3 (1.1-8.4) respectively], while variant allele-containing genotypes at mir-34b decreased [adjusted OR (95% CI)\u2009= 0.6 (0.4-0.9)] the risk of cancer significantly. Thus, genetic variation at miRNA and processing genes altered the risk of oral cancer in this population thereby corroborating studies in other populations. However, it is necessary to validate this result in different Indian sub populations with larger sample sizes and examine the effect of these variations in tumour tissues to explain the mechanism of risk alteration.",
"genre": "research_article",
"id": "sg:pub.10.1007/s13277-013-1450-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1091981",
"issn": [
"1010-4283",
"1423-0380"
],
"name": "Tumor Biology",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "35"
}
],
"name": "Genetic variations at microRNA and processing genes and risk of oral cancer",
"pagination": "3409-3414",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"75b267581fb4d108872b3a2712a95c6b2ff45dc10d7db6c66f8164953c5cfd58"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"24297336"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"8409922"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13277-013-1450-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024705138"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13277-013-1450-3",
"https://app.dimensions.ai/details/publication/pub.1024705138"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T01:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000522.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs13277-013-1450-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13277-013-1450-3'
This table displays all metadata directly associated to this object as RDF triples.
279 TRIPLES
21 PREDICATES
72 URIs
34 LITERALS
22 BLANK NODES