Identification of tissue-specific tumor biomarker using different optimization algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Shib Sankar Bhowmick, Debotosh Bhattacharjee, Luis Rato

ABSTRACT

BACKGROUND: Identification of differentially expressed genes, i.e., genes whose transcript abundance level differs across different biological or physiological conditions, was indeed a challenging task. However, the inception of transcriptome sequencing (RNA-seq) technology revolutionized the simultaneous measurement of the transcript abundance levels for thousands of genes. OBJECTIVE: In this paper, such next-generation sequencing (NGS) data is used to identify biomarker signatures for several of the most common cancer types (bladder, colon, kidney, brain, liver, lung, prostate, skin, and thyroid) METHODS: Here, the problem is mapped into the comparison of optimization algorithms for selecting a set of genes that lead to the highest classification accuracy of a two-class classification task between healthy and tumor samples. As the optimization algorithms Artificial Bee Colony (ABC), Ant Colony Optimization, Differential Evolution, and Particle Swarm Optimization are chosen for this experiment. A standard statistical method called DESeq2 is used to select differentially expressed genes before being feed to the optimization algorithms. Classification of healthy and tumor samples is done by support vector machine RESULTS: Cancer-specific validation yields remarkably good results in terms of accuracy. Highest classification accuracy is achieved by the ABC algorithm for Brain lower grade glioma data is 99.10%. This validation is well supported by a statistical test, gene ontology enrichment analysis, and KEGG pathway enrichment analysis for each cancer biomarker signature CONCLUSION: The current study identified robust genes as biomarker signatures and these identified biomarkers might be helpful to accurately identify tumors of unknown origin. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13258-018-0773-2

DOI

http://dx.doi.org/10.1007/s13258-018-0773-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110481309

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30535858


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "West Bengal University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.440742.1", 
          "name": [
            "Department of Electronics and Communication Engineering, Heritage Institute of Technology, 700107, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhowmick", 
        "givenName": "Shib Sankar", 
        "id": "sg:person.013153517601.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013153517601.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Computer Science and Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "Debotosh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of \u00c9vora", 
          "id": "https://www.grid.ac/institutes/grid.8389.a", 
          "name": [
            "Department of Informatics, University of Evora, 7004-516, Evora, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rato", 
        "givenName": "Luis", 
        "id": "sg:person.01071235356.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071235356.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jtbi.2010.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000306776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0014305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005566090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87527-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008223766", 
          "https://doi.org/10.1007/978-3-540-87527-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87527-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008223766", 
          "https://doi.org/10.1007/978-3-540-87527-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2011.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008823321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2011.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008823321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009424564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2004.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012529347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200106283442613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014884239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2009.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017195715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017349183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2011.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020498124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021514935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.08.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023382518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1556-4029.2007.00550.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028379725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2008.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028434262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029021006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.10.906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029326163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0304146101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030920049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-012-9328-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032059953", 
          "https://doi.org/10.1007/s10462-012-9328-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2009.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034238520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/130385.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036673042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigss.2011.09.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038937743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-30164-8_630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039598332", 
          "https://doi.org/10.1007/978-0-387-30164-8_630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2009.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041577716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-s5-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045755158", 
          "https://doi.org/10.1186/1471-2164-12-s5-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-31362-2_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049057047", 
          "https://doi.org/10.1007/978-3-642-31362-2_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-007-9149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049543869", 
          "https://doi.org/10.1007/s10898-007-9149-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-007-9149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049543869", 
          "https://doi.org/10.1007/s10898-007-9149-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052232525", 
          "https://doi.org/10.1186/1471-2105-13-298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1937.10503522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058298184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mci.2006.329691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061392262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2011.2158246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061773731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2008.919241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061777584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5398.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074829570", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-306-48056-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085136996", 
          "https://doi.org/10.1007/0-306-48056-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icec.1998.699146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094218712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2001.934374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094578610"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "BACKGROUND: Identification of differentially expressed genes, i.e., genes whose transcript abundance level differs across different biological or physiological conditions, was indeed a challenging task. However, the inception of transcriptome sequencing (RNA-seq) technology revolutionized the simultaneous measurement of the transcript abundance levels for thousands of genes.\nOBJECTIVE: In this paper, such next-generation sequencing (NGS) data is used to identify biomarker signatures for several of the most common cancer types (bladder, colon, kidney, brain, liver, lung, prostate, skin, and thyroid) METHODS: Here, the problem is mapped into the comparison of optimization algorithms for selecting a set of genes that lead to the highest classification accuracy of a two-class classification task between healthy and tumor samples. As the optimization algorithms Artificial Bee Colony (ABC), Ant Colony Optimization, Differential Evolution, and Particle Swarm Optimization are chosen for this experiment. A standard statistical method called DESeq2 is used to select differentially expressed genes before being feed to the optimization algorithms. Classification of healthy and tumor samples is done by support vector machine RESULTS: Cancer-specific validation yields remarkably good results in terms of accuracy. Highest classification accuracy is achieved by the ABC algorithm for Brain lower grade glioma data is 99.10%. This validation is well supported by a statistical test, gene ontology enrichment analysis, and KEGG pathway enrichment analysis for each cancer biomarker signature CONCLUSION: The current study identified robust genes as biomarker signatures and these identified biomarkers might be helpful to accurately identify tumors of unknown origin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13258-018-0773-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040407", 
        "issn": [
          "0254-5934", 
          "2092-9293"
        ], 
        "name": "Genes & Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Identification of tissue-specific tumor biomarker using different optimization algorithms", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13258-018-0773-2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "523cf4801b2f558be698d420450458962f5fb5ca15f5b5a1303ca8f69122822b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110481309"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101481027"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30535858"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13258-018-0773-2", 
      "https://app.dimensions.ai/details/publication/pub.1110481309"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56164_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13258-018-0773-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13258-018-0773-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13258-018-0773-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13258-018-0773-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13258-018-0773-2'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13258-018-0773-2 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nb48d8bd174564cc891a2e3579a32e151
4 schema:citation sg:pub.10.1007/0-306-48056-5_9
5 sg:pub.10.1007/978-0-387-30164-8_630
6 sg:pub.10.1007/978-3-540-87527-7
7 sg:pub.10.1007/978-3-642-31362-2_8
8 sg:pub.10.1007/s10462-012-9328-0
9 sg:pub.10.1007/s10898-007-9149-x
10 sg:pub.10.1023/a:1008202821328
11 sg:pub.10.1038/75556
12 sg:pub.10.1186/1471-2105-13-298
13 sg:pub.10.1186/1471-2164-12-s5-s1
14 sg:pub.10.1186/s13059-014-0550-8
15 https://app.dimensions.ai/details/publication/pub.1074829570
16 https://doi.org/10.1016/j.compbiolchem.2004.11.001
17 https://doi.org/10.1016/j.fsigen.2008.11.003
18 https://doi.org/10.1016/j.fsigen.2009.10.006
19 https://doi.org/10.1016/j.fsigen.2011.09.007
20 https://doi.org/10.1016/j.fsigss.2011.09.072
21 https://doi.org/10.1016/j.jbi.2009.07.008
22 https://doi.org/10.1016/j.jbi.2009.08.010
23 https://doi.org/10.1016/j.jbi.2011.01.001
24 https://doi.org/10.1016/j.jtbi.2010.10.037
25 https://doi.org/10.1056/nejm200106283442613
26 https://doi.org/10.1073/pnas.0304146101
27 https://doi.org/10.1080/01621459.1937.10503522
28 https://doi.org/10.1093/bioinformatics/16.10.906
29 https://doi.org/10.1093/bioinformatics/19.1.37
30 https://doi.org/10.1093/bioinformatics/btm312
31 https://doi.org/10.1093/bioinformatics/btm344
32 https://doi.org/10.1093/bioinformatics/btn145
33 https://doi.org/10.1093/nar/gkw377
34 https://doi.org/10.1109/cec.2001.934374
35 https://doi.org/10.1109/icec.1998.699146
36 https://doi.org/10.1109/icnn.1995.488968
37 https://doi.org/10.1109/mci.2006.329691
38 https://doi.org/10.1109/tpwrd.2011.2158246
39 https://doi.org/10.1109/tpwrs.2008.919241
40 https://doi.org/10.1111/j.1556-4029.2007.00550.x
41 https://doi.org/10.1126/science.283.5398.83
42 https://doi.org/10.1126/science.286.5439.531
43 https://doi.org/10.1145/130385.130401
44 https://doi.org/10.1200/jco.2004.08.186
45 https://doi.org/10.1371/journal.pone.0014305
46 schema:datePublished 2019-04
47 schema:datePublishedReg 2019-04-01
48 schema:description BACKGROUND: Identification of differentially expressed genes, i.e., genes whose transcript abundance level differs across different biological or physiological conditions, was indeed a challenging task. However, the inception of transcriptome sequencing (RNA-seq) technology revolutionized the simultaneous measurement of the transcript abundance levels for thousands of genes. OBJECTIVE: In this paper, such next-generation sequencing (NGS) data is used to identify biomarker signatures for several of the most common cancer types (bladder, colon, kidney, brain, liver, lung, prostate, skin, and thyroid) METHODS: Here, the problem is mapped into the comparison of optimization algorithms for selecting a set of genes that lead to the highest classification accuracy of a two-class classification task between healthy and tumor samples. As the optimization algorithms Artificial Bee Colony (ABC), Ant Colony Optimization, Differential Evolution, and Particle Swarm Optimization are chosen for this experiment. A standard statistical method called DESeq2 is used to select differentially expressed genes before being feed to the optimization algorithms. Classification of healthy and tumor samples is done by support vector machine RESULTS: Cancer-specific validation yields remarkably good results in terms of accuracy. Highest classification accuracy is achieved by the ABC algorithm for Brain lower grade glioma data is 99.10%. This validation is well supported by a statistical test, gene ontology enrichment analysis, and KEGG pathway enrichment analysis for each cancer biomarker signature CONCLUSION: The current study identified robust genes as biomarker signatures and these identified biomarkers might be helpful to accurately identify tumors of unknown origin.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N0829d4b5315e4ef69cd0c6791f944472
53 N6c0ec5fb174f46379cf4642f39ed762a
54 sg:journal.1040407
55 schema:name Identification of tissue-specific tumor biomarker using different optimization algorithms
56 schema:pagination 1-13
57 schema:productId N0c91770127084713b42a0480703c88a8
58 N501aec3755184cebb4d0ff83e574bb3a
59 N595da29d2bea4c38b03bff6bc34af99c
60 N88c10c8cc3ba4ec1b8f8c7790dbeb541
61 Nd5a17dc0463141dfb9c284b1cacdb064
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110481309
63 https://doi.org/10.1007/s13258-018-0773-2
64 schema:sdDatePublished 2019-04-15T09:14
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nb7c72e262b024be0b9d5cff95faf84e5
67 schema:url https://link.springer.com/10.1007%2Fs13258-018-0773-2
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0829d4b5315e4ef69cd0c6791f944472 schema:issueNumber 4
72 rdf:type schema:PublicationIssue
73 N0c91770127084713b42a0480703c88a8 schema:name pubmed_id
74 schema:value 30535858
75 rdf:type schema:PropertyValue
76 N2085fe7a0be8424e9bdf541865404ecc rdf:first sg:person.01071235356.03
77 rdf:rest rdf:nil
78 N501aec3755184cebb4d0ff83e574bb3a schema:name nlm_unique_id
79 schema:value 101481027
80 rdf:type schema:PropertyValue
81 N595da29d2bea4c38b03bff6bc34af99c schema:name doi
82 schema:value 10.1007/s13258-018-0773-2
83 rdf:type schema:PropertyValue
84 N6c0ec5fb174f46379cf4642f39ed762a schema:volumeNumber 41
85 rdf:type schema:PublicationVolume
86 N88c10c8cc3ba4ec1b8f8c7790dbeb541 schema:name readcube_id
87 schema:value 523cf4801b2f558be698d420450458962f5fb5ca15f5b5a1303ca8f69122822b
88 rdf:type schema:PropertyValue
89 N9f07e54eeed649b38ef8be6611a08ed1 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
90 schema:familyName Bhattacharjee
91 schema:givenName Debotosh
92 rdf:type schema:Person
93 Nb48d8bd174564cc891a2e3579a32e151 rdf:first sg:person.013153517601.05
94 rdf:rest Nc07830be8698420c962b09cee2796d0e
95 Nb7c72e262b024be0b9d5cff95faf84e5 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nc07830be8698420c962b09cee2796d0e rdf:first N9f07e54eeed649b38ef8be6611a08ed1
98 rdf:rest N2085fe7a0be8424e9bdf541865404ecc
99 Nd5a17dc0463141dfb9c284b1cacdb064 schema:name dimensions_id
100 schema:value pub.1110481309
101 rdf:type schema:PropertyValue
102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
103 schema:name Biological Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
106 schema:name Genetics
107 rdf:type schema:DefinedTerm
108 sg:journal.1040407 schema:issn 0254-5934
109 2092-9293
110 schema:name Genes & Genomics
111 rdf:type schema:Periodical
112 sg:person.01071235356.03 schema:affiliation https://www.grid.ac/institutes/grid.8389.a
113 schema:familyName Rato
114 schema:givenName Luis
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071235356.03
116 rdf:type schema:Person
117 sg:person.013153517601.05 schema:affiliation https://www.grid.ac/institutes/grid.440742.1
118 schema:familyName Bhowmick
119 schema:givenName Shib Sankar
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013153517601.05
121 rdf:type schema:Person
122 sg:pub.10.1007/0-306-48056-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085136996
123 https://doi.org/10.1007/0-306-48056-5_9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-0-387-30164-8_630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039598332
126 https://doi.org/10.1007/978-0-387-30164-8_630
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-540-87527-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008223766
129 https://doi.org/10.1007/978-3-540-87527-7
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-642-31362-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049057047
132 https://doi.org/10.1007/978-3-642-31362-2_8
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10462-012-9328-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032059953
135 https://doi.org/10.1007/s10462-012-9328-0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10898-007-9149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049543869
138 https://doi.org/10.1007/s10898-007-9149-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
141 https://doi.org/10.1023/a:1008202821328
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
144 https://doi.org/10.1038/75556
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/1471-2105-13-298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052232525
147 https://doi.org/10.1186/1471-2105-13-298
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/1471-2164-12-s5-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045755158
150 https://doi.org/10.1186/1471-2164-12-s5-s1
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
153 https://doi.org/10.1186/s13059-014-0550-8
154 rdf:type schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1074829570 schema:CreativeWork
156 https://doi.org/10.1016/j.compbiolchem.2004.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012529347
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.fsigen.2008.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028434262
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.fsigen.2009.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034238520
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.fsigen.2011.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008823321
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.fsigss.2011.09.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038937743
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jbi.2009.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041577716
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jbi.2009.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017195715
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jbi.2011.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020498124
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jtbi.2010.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000306776
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1056/nejm200106283442613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014884239
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.0304146101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030920049
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/01621459.1937.10503522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058298184
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/bioinformatics/16.10.906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029326163
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/19.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017349183
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/bioinformatics/btm312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021514935
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/bioinformatics/btm344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424564
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/bioinformatics/btn145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036673042
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/nar/gkw377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029021006
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/cec.2001.934374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094578610
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/icec.1998.699146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094218712
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/mci.2006.329691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392262
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/tpwrd.2011.2158246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061773731
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/tpwrs.2008.919241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061777584
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1556-4029.2007.00550.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028379725
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.283.5398.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563707
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1145/130385.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379424
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1200/jco.2004.08.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023382518
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1371/journal.pone.0014305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005566090
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
217 schema:name Department of Computer Science and Engineering, Jadavpur University, 700032, Kolkata, India
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.440742.1 schema:alternateName West Bengal University of Technology
220 schema:name Department of Electronics and Communication Engineering, Heritage Institute of Technology, 700107, Kolkata, India
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.8389.a schema:alternateName University of Évora
223 schema:name Department of Informatics, University of Evora, 7004-516, Evora, Portugal
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...