Transcriptome analysis of non-small cell lung cancer and genetically matched adjacent normal tissues identifies novel prognostic marker genes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Man Seok Bang, Keunsoo Kang, Jung-ju Lee, Yea-Jin Lee, Jin Eun Choi, Ju Yeon Ban, Chung-Hun Oh

ABSTRACT

Lung cancer can be classified into two different types, non-small cell lung cancer (NSCLC) and small cell lung cancer. Up to 85% of lung cancer cases are NSCLC. To identify prognostic marker genes for NSCLC, we conducted 10 pairs of genetically matched transcriptome (NSCLC and adjacent normal tissues obtained from 10 patients) analysis using next-generation sequencing. Pathway analysis revealed that the genes associated with the cell cycle are highly upregulated in NSCLC. Integrative analysis of two independent NSCLC studies, 71 pairs (GSE40419) and 58 pairs (TCGA-LUAD), also confirmed that cell cycle–related genes are mostly upregulated in NSCLC. All three independent NSCLC transcriptomes concordantly identified 10 potential tumor-marker genes that are highly expressed as well as significantly altered in NSCLC. A quantitative real-time polymerase chain reaction experiment validated the altered expressions of the genes. Among them, downregulation of MFAP4 and AGER and upregulation of SPP1 genes in NSCLC compared to normal tissues were significantly associated with poor prognosis as evaluated by Kaplan–Meier survival and receiver operating characteristic analyses. A further analysis indicated that the expression ratio of MFAP4 and SPP1 or AGER and SPP1 can be used as potential prognostic marker genes for NSCLC. More... »

PAGES

277-284

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13258-016-0492-5

DOI

http://dx.doi.org/10.1007/s13258-016-0492-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003630331


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Medical Laser, Graduate School, Dankook University, 31116, Dongnam-gu, Cheonan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Man Seok", 
        "id": "sg:person.01050337376.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050337376.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Microbiology, College of Natural Sciences, Dankook University, 31116, Cheonan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keunsoo", 
        "id": "sg:person.01152011320.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152011320.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Medical Laser, Graduate School, Dankook University, 31116, Dongnam-gu, Cheonan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jung-ju", 
        "id": "sg:person.01305564701.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305564701.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Medical Laser, Graduate School, Dankook University, 31116, Dongnam-gu, Cheonan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Yea-Jin", 
        "id": "sg:person.015135753407.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135753407.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jin Eun", 
        "id": "sg:person.01167664331.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167664331.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Dental Pharmacology, School of Dentistry, Dankook University, 31116, Cheonan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ban", 
        "givenName": "Ju Yeon", 
        "id": "sg:person.01334605463.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334605463.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Medical Laser, Graduate School, Dankook University, 31116, Dongnam-gu, Cheonan, Republic of Korea", 
            "Department of Oral Physiology, College of Dentistry, Dankook University, 31116, Cheonan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Chung-Hun", 
        "id": "sg:person.0760415160.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760415160.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1158/1541-7786.mcr-12-0634-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000377295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.20107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009055747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-14-970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011179239", 
          "https://doi.org/10.1186/1471-2407-14-970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013257560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2014.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013731709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.115.306672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015070064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.115.306672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015070064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.145144.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017622007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-14-280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018690265", 
          "https://doi.org/10.1186/1471-2407-14-280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-4-154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019550419", 
          "https://doi.org/10.1186/1752-0509-4-154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-12-1139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020063069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-06-1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024484190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2012.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027243747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2012.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027243747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028519566", 
          "https://doi.org/10.1038/nrc3775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034342251", 
          "https://doi.org/10.1038/nature07398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038580641", 
          "https://doi.org/10.1038/nature13385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038580641", 
          "https://doi.org/10.1038/nature13385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181b27170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041799266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044282578", 
          "https://doi.org/10.1038/nature07423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044559205", 
          "https://doi.org/10.1186/1471-2164-12-293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.28.8126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044584195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044758756", 
          "https://doi.org/10.1186/1471-2105-14-128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045760294", 
          "https://doi.org/10.1038/nbt.3122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050225274", 
          "https://doi.org/10.1038/srep13413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa011954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052159806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053091615", 
          "https://doi.org/10.1186/1471-2105-11-94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4238/2015.december.22.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072393616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2010.0056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078196156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2010.0056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078196156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2072-1439.2013.08.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078804795"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "Lung cancer can be classified into two different types, non-small cell lung cancer (NSCLC) and small cell lung cancer. Up to 85% of lung cancer cases are NSCLC. To identify prognostic marker genes for NSCLC, we conducted 10 pairs of genetically matched transcriptome (NSCLC and adjacent normal tissues obtained from 10 patients) analysis using next-generation sequencing. Pathway analysis revealed that the genes associated with the cell cycle are highly upregulated in NSCLC. Integrative analysis of two independent NSCLC studies, 71 pairs (GSE40419) and 58 pairs (TCGA-LUAD), also confirmed that cell cycle\u2013related genes are mostly upregulated in NSCLC. All three independent NSCLC transcriptomes concordantly identified 10 potential tumor-marker genes that are highly expressed as well as significantly altered in NSCLC. A quantitative real-time polymerase chain reaction experiment validated the altered expressions of the genes. Among them, downregulation of MFAP4 and AGER and upregulation of SPP1 genes in NSCLC compared to normal tissues were significantly associated with poor prognosis as evaluated by Kaplan\u2013Meier survival and receiver operating characteristic analyses. A further analysis indicated that the expression ratio of MFAP4 and SPP1 or AGER and SPP1 can be used as potential prognostic marker genes for NSCLC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13258-016-0492-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040407", 
        "issn": [
          "0254-5934", 
          "2092-9293"
        ], 
        "name": "Genes & Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Transcriptome analysis of non-small cell lung cancer and genetically matched adjacent normal tissues identifies novel prognostic marker genes", 
    "pagination": "277-284", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "114b56e154cee1cacb45f62381d586ac2284912d1982b092d7167e4ec984a20a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13258-016-0492-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003630331"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13258-016-0492-5", 
      "https://app.dimensions.ai/details/publication/pub.1003630331"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13258-016-0492-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13258-016-0492-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13258-016-0492-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13258-016-0492-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13258-016-0492-5'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13258-016-0492-5 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N1118c6b3530d4c55b87556e7e2803c6b
4 schema:citation sg:pub.10.1038/nature07398
5 sg:pub.10.1038/nature07423
6 sg:pub.10.1038/nature13385
7 sg:pub.10.1038/nbt.1621
8 sg:pub.10.1038/nbt.3122
9 sg:pub.10.1038/nrc3775
10 sg:pub.10.1038/srep13413
11 sg:pub.10.1186/1471-2105-11-94
12 sg:pub.10.1186/1471-2105-14-128
13 sg:pub.10.1186/1471-2164-12-293
14 sg:pub.10.1186/1471-2407-14-280
15 sg:pub.10.1186/1471-2407-14-970
16 sg:pub.10.1186/1752-0509-4-154
17 https://doi.org/10.1016/j.cell.2012.08.029
18 https://doi.org/10.1016/j.lungcan.2014.03.018
19 https://doi.org/10.1056/nejmoa011954
20 https://doi.org/10.1093/bioinformatics/bts635
21 https://doi.org/10.1093/bioinformatics/btv677
22 https://doi.org/10.1093/nar/gkq1019
23 https://doi.org/10.1097/jto.0b013e3181b27170
24 https://doi.org/10.1101/gr.145144.112
25 https://doi.org/10.1158/0008-5472.can-06-1191
26 https://doi.org/10.1158/1078-0432.ccr-12-1139
27 https://doi.org/10.1158/1541-7786.mcr-12-0634-t
28 https://doi.org/10.1161/atvbaha.115.306672
29 https://doi.org/10.1200/jco.2010.28.8126
30 https://doi.org/10.1371/journal.pbio.0050254
31 https://doi.org/10.3322/caac.20107
32 https://doi.org/10.3322/caac.21262
33 https://doi.org/10.3978/j.issn.2072-1439.2013.08.43
34 https://doi.org/10.4238/2015.december.22.2
35 https://doi.org/10.6004/jnccn.2010.0056
36 schema:datePublished 2017-03
37 schema:datePublishedReg 2017-03-01
38 schema:description Lung cancer can be classified into two different types, non-small cell lung cancer (NSCLC) and small cell lung cancer. Up to 85% of lung cancer cases are NSCLC. To identify prognostic marker genes for NSCLC, we conducted 10 pairs of genetically matched transcriptome (NSCLC and adjacent normal tissues obtained from 10 patients) analysis using next-generation sequencing. Pathway analysis revealed that the genes associated with the cell cycle are highly upregulated in NSCLC. Integrative analysis of two independent NSCLC studies, 71 pairs (GSE40419) and 58 pairs (TCGA-LUAD), also confirmed that cell cycle–related genes are mostly upregulated in NSCLC. All three independent NSCLC transcriptomes concordantly identified 10 potential tumor-marker genes that are highly expressed as well as significantly altered in NSCLC. A quantitative real-time polymerase chain reaction experiment validated the altered expressions of the genes. Among them, downregulation of MFAP4 and AGER and upregulation of SPP1 genes in NSCLC compared to normal tissues were significantly associated with poor prognosis as evaluated by Kaplan–Meier survival and receiver operating characteristic analyses. A further analysis indicated that the expression ratio of MFAP4 and SPP1 or AGER and SPP1 can be used as potential prognostic marker genes for NSCLC.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf Ncdcc76c1686a48e5b0460953ced2fa24
43 Nfac48de142b948008542526ca6f0ee23
44 sg:journal.1040407
45 schema:name Transcriptome analysis of non-small cell lung cancer and genetically matched adjacent normal tissues identifies novel prognostic marker genes
46 schema:pagination 277-284
47 schema:productId N035a37b639414393a9eac63e78220b50
48 N2862a8f8083f4423b41b2c0629ed9687
49 N641a4c672350406bb13eef70a311d0f0
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003630331
51 https://doi.org/10.1007/s13258-016-0492-5
52 schema:sdDatePublished 2019-04-11T12:27
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N347bb7d39e434f2d9bc6e37c42a0aabf
55 schema:url https://link.springer.com/10.1007%2Fs13258-016-0492-5
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N035a37b639414393a9eac63e78220b50 schema:name dimensions_id
60 schema:value pub.1003630331
61 rdf:type schema:PropertyValue
62 N042f33515d3e4f31b853fe1904b9aac9 rdf:first sg:person.01152011320.12
63 rdf:rest Nb542a664319249ca98ebbf90e2e8d522
64 N1118c6b3530d4c55b87556e7e2803c6b rdf:first sg:person.01050337376.43
65 rdf:rest N042f33515d3e4f31b853fe1904b9aac9
66 N15e771a28aee41bdba83aeeb2f71b994 rdf:first sg:person.015135753407.16
67 rdf:rest N2b9d1ca85584422d875b185d6178e6d8
68 N2862a8f8083f4423b41b2c0629ed9687 schema:name readcube_id
69 schema:value 114b56e154cee1cacb45f62381d586ac2284912d1982b092d7167e4ec984a20a
70 rdf:type schema:PropertyValue
71 N2b9d1ca85584422d875b185d6178e6d8 rdf:first sg:person.01167664331.05
72 rdf:rest Nc2bb9f6d741e4471a43b95a9435d2d43
73 N347bb7d39e434f2d9bc6e37c42a0aabf schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N641a4c672350406bb13eef70a311d0f0 schema:name doi
76 schema:value 10.1007/s13258-016-0492-5
77 rdf:type schema:PropertyValue
78 N7a953634e380415796468e5ed122a611 rdf:first sg:person.0760415160.04
79 rdf:rest rdf:nil
80 Nb542a664319249ca98ebbf90e2e8d522 rdf:first sg:person.01305564701.12
81 rdf:rest N15e771a28aee41bdba83aeeb2f71b994
82 Nc2bb9f6d741e4471a43b95a9435d2d43 rdf:first sg:person.01334605463.47
83 rdf:rest N7a953634e380415796468e5ed122a611
84 Ncdcc76c1686a48e5b0460953ced2fa24 schema:issueNumber 3
85 rdf:type schema:PublicationIssue
86 Nfac48de142b948008542526ca6f0ee23 schema:volumeNumber 39
87 rdf:type schema:PublicationVolume
88 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
89 schema:name Medical and Health Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
92 schema:name Oncology and Carcinogenesis
93 rdf:type schema:DefinedTerm
94 sg:journal.1040407 schema:issn 0254-5934
95 2092-9293
96 schema:name Genes & Genomics
97 rdf:type schema:Periodical
98 sg:person.01050337376.43 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
99 schema:familyName Bang
100 schema:givenName Man Seok
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050337376.43
102 rdf:type schema:Person
103 sg:person.01152011320.12 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
104 schema:familyName Kang
105 schema:givenName Keunsoo
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152011320.12
107 rdf:type schema:Person
108 sg:person.01167664331.05 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
109 schema:familyName Choi
110 schema:givenName Jin Eun
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167664331.05
112 rdf:type schema:Person
113 sg:person.01305564701.12 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
114 schema:familyName Lee
115 schema:givenName Jung-ju
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305564701.12
117 rdf:type schema:Person
118 sg:person.01334605463.47 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
119 schema:familyName Ban
120 schema:givenName Ju Yeon
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334605463.47
122 rdf:type schema:Person
123 sg:person.015135753407.16 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
124 schema:familyName Lee
125 schema:givenName Yea-Jin
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135753407.16
127 rdf:type schema:Person
128 sg:person.0760415160.04 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
129 schema:familyName Oh
130 schema:givenName Chung-Hun
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760415160.04
132 rdf:type schema:Person
133 sg:pub.10.1038/nature07398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034342251
134 https://doi.org/10.1038/nature07398
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature07423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044282578
137 https://doi.org/10.1038/nature07423
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature13385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038580641
140 https://doi.org/10.1038/nature13385
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
143 https://doi.org/10.1038/nbt.1621
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nbt.3122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045760294
146 https://doi.org/10.1038/nbt.3122
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nrc3775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028519566
149 https://doi.org/10.1038/nrc3775
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep13413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050225274
152 https://doi.org/10.1038/srep13413
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-11-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053091615
155 https://doi.org/10.1186/1471-2105-11-94
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2105-14-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044758756
158 https://doi.org/10.1186/1471-2105-14-128
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2164-12-293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559205
161 https://doi.org/10.1186/1471-2164-12-293
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1471-2407-14-280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018690265
164 https://doi.org/10.1186/1471-2407-14-280
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2407-14-970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011179239
167 https://doi.org/10.1186/1471-2407-14-970
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1752-0509-4-154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019550419
170 https://doi.org/10.1186/1752-0509-4-154
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cell.2012.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027243747
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.lungcan.2014.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013731709
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1056/nejmoa011954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052159806
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/bioinformatics/btv677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414564
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/nar/gkq1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521993
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1097/jto.0b013e3181b27170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041799266
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1101/gr.145144.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017622007
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1158/0008-5472.can-06-1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024484190
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1158/1078-0432.ccr-12-1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020063069
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1158/1541-7786.mcr-12-0634-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1000377295
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1161/atvbaha.115.306672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015070064
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1200/jco.2010.28.8126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044584195
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pbio.0050254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942453
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3322/caac.20107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009055747
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3322/caac.21262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013257560
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3978/j.issn.2072-1439.2013.08.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078804795
205 rdf:type schema:CreativeWork
206 https://doi.org/10.4238/2015.december.22.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072393616
207 rdf:type schema:CreativeWork
208 https://doi.org/10.6004/jnccn.2010.0056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078196156
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.258803.4 schema:alternateName Kyungpook National University
211 schema:name Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.411982.7 schema:alternateName Dankook University
214 schema:name Department of Dental Pharmacology, School of Dentistry, Dankook University, 31116, Cheonan, Republic of Korea
215 Department of Medical Laser, Graduate School, Dankook University, 31116, Dongnam-gu, Cheonan, Republic of Korea
216 Department of Microbiology, College of Natural Sciences, Dankook University, 31116, Cheonan, Republic of Korea
217 Department of Oral Physiology, College of Dentistry, Dankook University, 31116, Cheonan, Republic of Korea
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...