Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-09

AUTHORS

Nurudeen A. Adegoke, Andrew Punnett, Marti J. Anderson

ABSTRACT

Estimating high-dimensional dependence structures in models of multivariate datasets is an ongoing challenge. Copulas provide a powerful and intuitive way to model dependence structure in the joint distribution of disparate types of variables. Here, we propose an estimation method for Gaussian copula parameters based on the maximum likelihood estimate of a covariance matrix that includes shrinkage and where all of the diagonal elements are restricted to be equal to 1. We show that this estimation problem can be solved using a numerical solution that optimizes the problem in a block coordinate descent fashion. We illustrate the advantage of our proposed scheme in providing an efficient estimate of sparse Gaussian copula covariance parameters using a simulation study. The sparse estimate was obtained by regularizing the constrained problem using either the least absolute shrinkage and selection operator (LASSO) or the adaptive LASSO penalty, applied to either the covariance matrix or the inverse covariance (precision) matrix. Simulation results indicate that our method outperforms conventional estimates of sparse Gaussian copula covariance parameters. We demonstrate the proposed method for modelling dependence structures through an analysis of multivariate groundfish abundance data obtained from annual bottom trawl surveys in the northeast Pacific from 2014 to 2018. Supplementary materials accompanying this paper appear on-line. More... »

PAGES

240-260

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13253-021-00475-x

DOI

http://dx.doi.org/10.1007/s13253-021-00475-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142491480


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.148374.d", 
          "name": [
            "PRIMER-e (Quest Research Limited), Auckland, New Zealand", 
            "New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adegoke", 
        "givenName": "Nurudeen A.", 
        "id": "sg:person.010623463657.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623463657.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PRIMER-e (Quest Research Limited), Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "PRIMER-e (Quest Research Limited), Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Punnett", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.148374.d", 
          "name": [
            "PRIMER-e (Quest Research Limited), Auckland, New Zealand", 
            "New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "Marti J.", 
        "id": "sg:person.01236073127.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236073127.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1017501703105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031311566", 
          "https://doi.org/10.1023/a:1017501703105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02189866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033694060", 
          "https://doi.org/10.1007/bf02189866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008669208700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018188285", 
          "https://doi.org/10.1023/a:1008669208700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-013-9385-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018359413", 
          "https://doi.org/10.1007/s11222-013-9385-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12465-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005643223", 
          "https://doi.org/10.1007/978-3-642-12465-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-09", 
    "datePublishedReg": "2021-11-09", 
    "description": "Estimating high-dimensional dependence structures in models of multivariate datasets is an ongoing challenge. Copulas provide a powerful and intuitive way to model dependence structure in the joint distribution of disparate types of variables. Here, we propose an estimation method for Gaussian copula parameters based on the maximum likelihood estimate of a covariance matrix that includes shrinkage and where all of the diagonal elements are restricted to be equal to 1. We show that this estimation problem can be solved using a numerical solution that optimizes the problem in a block coordinate descent fashion. We illustrate the advantage of our proposed scheme in providing an efficient estimate of sparse Gaussian copula covariance parameters using a simulation study. The sparse estimate was obtained by regularizing the constrained problem using either the least absolute shrinkage and selection operator (LASSO) or the adaptive LASSO penalty, applied to either the covariance matrix or the inverse covariance (precision) matrix. Simulation results indicate that our method outperforms conventional estimates of sparse Gaussian copula covariance parameters. We demonstrate the proposed method for modelling dependence structures through an analysis of multivariate groundfish abundance data obtained from annual bottom trawl surveys in the northeast Pacific from 2014 to 2018. Supplementary materials accompanying this paper appear on-line.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13253-021-00475-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9015563", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1134206", 
        "issn": [
          "1085-7117", 
          "1537-2693"
        ], 
        "name": "Journal of Agricultural, Biological and Environmental Statistics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "dependence structure", 
      "covariance matrix", 
      "covariance parameters", 
      "Gaussian copula parameters", 
      "inverse covariance matrix", 
      "adaptive LASSO penalty", 
      "multivariate dependence structure", 
      "maximum likelihood estimates", 
      "estimation problem", 
      "numerical solution", 
      "lasso penalty", 
      "sparse estimates", 
      "copula parameters", 
      "efficient estimates", 
      "likelihood estimates", 
      "joint distribution", 
      "descent fashion", 
      "diagonal elements", 
      "multivariate datasets", 
      "maximum likelihood", 
      "estimation method", 
      "simulation study", 
      "selection operator", 
      "simulation results", 
      "supplementary material", 
      "problem", 
      "matrix", 
      "least absolute shrinkage", 
      "estimates", 
      "conventional estimates", 
      "parameters", 
      "intuitive way", 
      "absolute shrinkage", 
      "operators", 
      "copula", 
      "estimation", 
      "scheme", 
      "structure", 
      "solution", 
      "disparate types", 
      "abundance data", 
      "model", 
      "annual bottom trawl surveys", 
      "distribution", 
      "variables", 
      "penalty", 
      "advantages", 
      "bottom trawl surveys", 
      "dataset", 
      "results", 
      "trawl surveys", 
      "elements", 
      "way", 
      "analysis", 
      "lines", 
      "likelihood", 
      "data", 
      "types", 
      "fashion", 
      "materials", 
      "shrinkage", 
      "block", 
      "challenges", 
      "northeast Pacific", 
      "study", 
      "survey", 
      "ongoing challenge", 
      "Pacific", 
      "method", 
      "paper"
    ], 
    "name": "Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood", 
    "pagination": "240-260", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142491480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13253-021-00475-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13253-021-00475-x", 
      "https://app.dimensions.ai/details/publication/pub.1142491480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_893.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13253-021-00475-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00475-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00475-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00475-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00475-x'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      100 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13253-021-00475-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N3f5eb92a3fda4f4c970cb22b731b6323
4 schema:citation sg:pub.10.1007/978-3-642-12465-5
5 sg:pub.10.1007/bf02189866
6 sg:pub.10.1007/s11222-013-9385-5
7 sg:pub.10.1023/a:1008669208700
8 sg:pub.10.1023/a:1017501703105
9 schema:datePublished 2021-11-09
10 schema:datePublishedReg 2021-11-09
11 schema:description Estimating high-dimensional dependence structures in models of multivariate datasets is an ongoing challenge. Copulas provide a powerful and intuitive way to model dependence structure in the joint distribution of disparate types of variables. Here, we propose an estimation method for Gaussian copula parameters based on the maximum likelihood estimate of a covariance matrix that includes shrinkage and where all of the diagonal elements are restricted to be equal to 1. We show that this estimation problem can be solved using a numerical solution that optimizes the problem in a block coordinate descent fashion. We illustrate the advantage of our proposed scheme in providing an efficient estimate of sparse Gaussian copula covariance parameters using a simulation study. The sparse estimate was obtained by regularizing the constrained problem using either the least absolute shrinkage and selection operator (LASSO) or the adaptive LASSO penalty, applied to either the covariance matrix or the inverse covariance (precision) matrix. Simulation results indicate that our method outperforms conventional estimates of sparse Gaussian copula covariance parameters. We demonstrate the proposed method for modelling dependence structures through an analysis of multivariate groundfish abundance data obtained from annual bottom trawl surveys in the northeast Pacific from 2014 to 2018. Supplementary materials accompanying this paper appear on-line.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N7ed6172737614df084737fdb88453a3c
16 Na8a1e0d8514d427bb7927be1f1582f65
17 sg:journal.1134206
18 schema:keywords Gaussian copula parameters
19 Pacific
20 absolute shrinkage
21 abundance data
22 adaptive LASSO penalty
23 advantages
24 analysis
25 annual bottom trawl surveys
26 block
27 bottom trawl surveys
28 challenges
29 conventional estimates
30 copula
31 copula parameters
32 covariance matrix
33 covariance parameters
34 data
35 dataset
36 dependence structure
37 descent fashion
38 diagonal elements
39 disparate types
40 distribution
41 efficient estimates
42 elements
43 estimates
44 estimation
45 estimation method
46 estimation problem
47 fashion
48 intuitive way
49 inverse covariance matrix
50 joint distribution
51 lasso penalty
52 least absolute shrinkage
53 likelihood
54 likelihood estimates
55 lines
56 materials
57 matrix
58 maximum likelihood
59 maximum likelihood estimates
60 method
61 model
62 multivariate datasets
63 multivariate dependence structure
64 northeast Pacific
65 numerical solution
66 ongoing challenge
67 operators
68 paper
69 parameters
70 penalty
71 problem
72 results
73 scheme
74 selection operator
75 shrinkage
76 simulation results
77 simulation study
78 solution
79 sparse estimates
80 structure
81 study
82 supplementary material
83 survey
84 trawl surveys
85 types
86 variables
87 way
88 schema:name Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood
89 schema:pagination 240-260
90 schema:productId N44822660cbda4eb2a9b0bb1f83d44b8c
91 Na0e09c4ee991480190c3c90111aadd6c
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142491480
93 https://doi.org/10.1007/s13253-021-00475-x
94 schema:sdDatePublished 2022-05-10T10:32
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nab8b49a55326405687f57a608dfd4599
97 schema:url https://doi.org/10.1007/s13253-021-00475-x
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N3f5eb92a3fda4f4c970cb22b731b6323 rdf:first sg:person.010623463657.55
102 rdf:rest N7889c80b8d3d43c294d6584a907c95ee
103 N440d749376a34bf9976721ff28477d11 rdf:first sg:person.01236073127.13
104 rdf:rest rdf:nil
105 N44822660cbda4eb2a9b0bb1f83d44b8c schema:name dimensions_id
106 schema:value pub.1142491480
107 rdf:type schema:PropertyValue
108 N7889c80b8d3d43c294d6584a907c95ee rdf:first Neafc9ec6b6d441fb8df75d5bb713b5c0
109 rdf:rest N440d749376a34bf9976721ff28477d11
110 N7ed6172737614df084737fdb88453a3c schema:issueNumber 2
111 rdf:type schema:PublicationIssue
112 Na0e09c4ee991480190c3c90111aadd6c schema:name doi
113 schema:value 10.1007/s13253-021-00475-x
114 rdf:type schema:PropertyValue
115 Na8a1e0d8514d427bb7927be1f1582f65 schema:volumeNumber 27
116 rdf:type schema:PublicationVolume
117 Nab8b49a55326405687f57a608dfd4599 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Neafc9ec6b6d441fb8df75d5bb713b5c0 schema:affiliation grid-institutes:None
120 schema:familyName Punnett
121 schema:givenName Andrew
122 rdf:type schema:Person
123 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
124 schema:name Mathematical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
127 schema:name Statistics
128 rdf:type schema:DefinedTerm
129 sg:grant.9015563 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-021-00475-x
130 rdf:type schema:MonetaryGrant
131 sg:journal.1134206 schema:issn 1085-7117
132 1537-2693
133 schema:name Journal of Agricultural, Biological and Environmental Statistics
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.010623463657.55 schema:affiliation grid-institutes:grid.148374.d
137 schema:familyName Adegoke
138 schema:givenName Nurudeen A.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623463657.55
140 rdf:type schema:Person
141 sg:person.01236073127.13 schema:affiliation grid-institutes:grid.148374.d
142 schema:familyName Anderson
143 schema:givenName Marti J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236073127.13
145 rdf:type schema:Person
146 sg:pub.10.1007/978-3-642-12465-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005643223
147 https://doi.org/10.1007/978-3-642-12465-5
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02189866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033694060
150 https://doi.org/10.1007/bf02189866
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11222-013-9385-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018359413
153 https://doi.org/10.1007/s11222-013-9385-5
154 rdf:type schema:CreativeWork
155 sg:pub.10.1023/a:1008669208700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018188285
156 https://doi.org/10.1023/a:1008669208700
157 rdf:type schema:CreativeWork
158 sg:pub.10.1023/a:1017501703105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031311566
159 https://doi.org/10.1023/a:1017501703105
160 rdf:type schema:CreativeWork
161 grid-institutes:None schema:alternateName PRIMER-e (Quest Research Limited), Auckland, New Zealand
162 schema:name PRIMER-e (Quest Research Limited), Auckland, New Zealand
163 rdf:type schema:Organization
164 grid-institutes:grid.148374.d schema:alternateName New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand
165 schema:name New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand
166 PRIMER-e (Quest Research Limited), Auckland, New Zealand
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...