Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-13

AUTHORS

Seungyong Hwang, Randy C. S. Lai, Thomas C. M. Lee

ABSTRACT

In many biomedical experiments, such as toxicology and pharmacological dose–response studies, one primary goal is to identify a threshold value such as the minimum effective dose. This paper applies Fisher’s fiducial idea to develop an inference method for these threshold values. In addition to providing point estimates, this method also offers confidence intervals. Another appealing feature of the proposed method is that it allows the use of multiple parametric relationships to model the underlying pattern of the data and hence, reduces the risk of model mis-specification. All these parametric relationships satisfy the qualitative assumption that the response and dosage relationship is monotonic after the threshold value. In practice, this assumption may not be valid but is commonly used in dose–response studies. The empirical performance of the proposed method is illustrated with synthetic experiments and real data applications. When comparing to existing methods in the literature, the proposed method produces superior results in most synthetic experiments and real data sets. Supplementary materials accompanying this paper appear on-line. More... »

PAGES

109-124

References to SciGraph publications

  • 2014-07-29. Bayesian designs of phase II oncology trials to select maximum effective dose assuming monotonic dose-response relationship in BMC MEDICAL RESEARCH METHODOLOGY
  • 2006-01-01. Analysis of Dose–Response Studies—Modeling Approaches in DOSE FINDING IN DRUG DEVELOPMENT
  • 2001-12. Optimizing the precision of toxicity threshold estimation using a two-stage experimental design in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 2007-03. The simultaneous analysis of mixed discrete and continuous outcomes using nonlinear threshold models in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 2005-06. Changepoint alternatives to the NOAEL in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13253-021-00472-0

    DOI

    http://dx.doi.org/10.1007/s13253-021-00472-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141079636


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hwang", 
            "givenName": "Seungyong", 
            "id": "sg:person.010662172737.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662172737.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lai", 
            "givenName": "Randy C. S.", 
            "id": "sg:person.012515373317.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515373317.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Thomas C. M.", 
            "id": "sg:person.01306650334.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306650334.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/0-387-33706-7_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041359822", 
              "https://doi.org/10.1007/0-387-33706-7_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2288-14-95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005127519", 
              "https://doi.org/10.1186/1471-2288-14-95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1198/108571107x177690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010646923", 
              "https://doi.org/10.1198/108571107x177690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1198/108571105x46525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050151197", 
              "https://doi.org/10.1198/108571105x46525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1198/10857110152946802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045076770", 
              "https://doi.org/10.1198/10857110152946802"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-13", 
        "datePublishedReg": "2021-09-13", 
        "description": "In many biomedical experiments, such as toxicology and pharmacological dose\u2013response studies, one primary goal is to identify a threshold value such as the minimum effective dose. This paper applies Fisher\u2019s fiducial idea to develop an inference method for these threshold values. In addition to providing point estimates, this method also offers confidence intervals. Another appealing feature of the proposed method is that it allows the use of multiple parametric relationships to model the underlying pattern of the data and hence, reduces the risk of model mis-specification. All these parametric relationships satisfy the qualitative assumption that the response and dosage relationship is monotonic after the threshold value. In practice, this assumption may not be valid but is commonly used in dose\u2013response studies. The empirical performance of the proposed method is illustrated with synthetic experiments and real data applications. When comparing to existing methods in the literature, the proposed method produces superior results in most synthetic experiments and real data sets. Supplementary materials accompanying this paper appear on-line.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13253-021-00472-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7671732", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8523794", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7671741", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8566350", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1134206", 
            "issn": [
              "1085-7117", 
              "1537-2693"
            ], 
            "name": "Journal of Agricultural, Biological and Environmental Statistics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "Generalized Fiducial Inference", 
          "real data application", 
          "real data sets", 
          "fiducial inference", 
          "risk of model", 
          "synthetic experiments", 
          "regression setting", 
          "inference methods", 
          "empirical performance", 
          "pharmacological dose-response studies", 
          "qualitative assumptions", 
          "parametric relationship", 
          "appealing features", 
          "data applications", 
          "point estimates", 
          "supplementary material", 
          "threshold value", 
          "data sets", 
          "assumption", 
          "biomedical experiments", 
          "threshold estimation", 
          "inference", 
          "superior results", 
          "estimation", 
          "estimates", 
          "set", 
          "model", 
          "experiments", 
          "underlying pattern", 
          "confidence intervals", 
          "values", 
          "applications", 
          "idea", 
          "performance", 
          "primary goal", 
          "results", 
          "interval", 
          "features", 
          "lines", 
          "data", 
          "literature", 
          "goal", 
          "materials", 
          "use", 
          "relationship", 
          "addition", 
          "setting", 
          "study", 
          "patterns", 
          "dose response", 
          "risk", 
          "response", 
          "practice", 
          "method", 
          "dose-response study", 
          "effective dose", 
          "toxicology", 
          "dose", 
          "minimum effective dose", 
          "paper", 
          "dosage relationship"
        ], 
        "name": "Generalized Fiducial Inference for Threshold Estimation in Dose\u2013Response and Regression Settings", 
        "pagination": "109-124", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141079636"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13253-021-00472-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13253-021-00472-0", 
          "https://app.dimensions.ai/details/publication/pub.1141079636"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_889.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13253-021-00472-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00472-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00472-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00472-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00472-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      22 PREDICATES      91 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13253-021-00472-0 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N482be30e228c46cab29df6956be6e073
    4 schema:citation sg:pub.10.1007/0-387-33706-7_10
    5 sg:pub.10.1186/1471-2288-14-95
    6 sg:pub.10.1198/10857110152946802
    7 sg:pub.10.1198/108571105x46525
    8 sg:pub.10.1198/108571107x177690
    9 schema:datePublished 2021-09-13
    10 schema:datePublishedReg 2021-09-13
    11 schema:description In many biomedical experiments, such as toxicology and pharmacological dose–response studies, one primary goal is to identify a threshold value such as the minimum effective dose. This paper applies Fisher’s fiducial idea to develop an inference method for these threshold values. In addition to providing point estimates, this method also offers confidence intervals. Another appealing feature of the proposed method is that it allows the use of multiple parametric relationships to model the underlying pattern of the data and hence, reduces the risk of model mis-specification. All these parametric relationships satisfy the qualitative assumption that the response and dosage relationship is monotonic after the threshold value. In practice, this assumption may not be valid but is commonly used in dose–response studies. The empirical performance of the proposed method is illustrated with synthetic experiments and real data applications. When comparing to existing methods in the literature, the proposed method produces superior results in most synthetic experiments and real data sets. Supplementary materials accompanying this paper appear on-line.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N36760dd3f95742609758c1cc503809ca
    16 N9733a61636b14cc48b3d57e1a86a8f3b
    17 sg:journal.1134206
    18 schema:keywords Generalized Fiducial Inference
    19 addition
    20 appealing features
    21 applications
    22 assumption
    23 biomedical experiments
    24 confidence intervals
    25 data
    26 data applications
    27 data sets
    28 dosage relationship
    29 dose
    30 dose response
    31 dose-response study
    32 effective dose
    33 empirical performance
    34 estimates
    35 estimation
    36 experiments
    37 features
    38 fiducial inference
    39 goal
    40 idea
    41 inference
    42 inference methods
    43 interval
    44 lines
    45 literature
    46 materials
    47 method
    48 minimum effective dose
    49 model
    50 paper
    51 parametric relationship
    52 patterns
    53 performance
    54 pharmacological dose-response studies
    55 point estimates
    56 practice
    57 primary goal
    58 qualitative assumptions
    59 real data application
    60 real data sets
    61 regression setting
    62 relationship
    63 response
    64 results
    65 risk
    66 risk of model
    67 set
    68 setting
    69 study
    70 superior results
    71 supplementary material
    72 synthetic experiments
    73 threshold estimation
    74 threshold value
    75 toxicology
    76 underlying pattern
    77 use
    78 values
    79 schema:name Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings
    80 schema:pagination 109-124
    81 schema:productId N1faa94ca71b241e39a78a5315c6e72a8
    82 Na4d6d3cc449748f7849a83a733e4e4f0
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141079636
    84 https://doi.org/10.1007/s13253-021-00472-0
    85 schema:sdDatePublished 2022-05-10T10:30
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N75f36195b95642f7a8f1125fd69dcf26
    88 schema:url https://doi.org/10.1007/s13253-021-00472-0
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N1faa94ca71b241e39a78a5315c6e72a8 schema:name dimensions_id
    93 schema:value pub.1141079636
    94 rdf:type schema:PropertyValue
    95 N36760dd3f95742609758c1cc503809ca schema:volumeNumber 27
    96 rdf:type schema:PublicationVolume
    97 N482be30e228c46cab29df6956be6e073 rdf:first sg:person.010662172737.28
    98 rdf:rest Nc38f313424c0419ab4e93734027d27cf
    99 N71e27c8e0210449fb80cc1a6f043d771 rdf:first sg:person.01306650334.27
    100 rdf:rest rdf:nil
    101 N75f36195b95642f7a8f1125fd69dcf26 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N9733a61636b14cc48b3d57e1a86a8f3b schema:issueNumber 1
    104 rdf:type schema:PublicationIssue
    105 Na4d6d3cc449748f7849a83a733e4e4f0 schema:name doi
    106 schema:value 10.1007/s13253-021-00472-0
    107 rdf:type schema:PropertyValue
    108 Nc38f313424c0419ab4e93734027d27cf rdf:first sg:person.012515373317.48
    109 rdf:rest N71e27c8e0210449fb80cc1a6f043d771
    110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Mathematical Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Statistics
    115 rdf:type schema:DefinedTerm
    116 sg:grant.7671732 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-021-00472-0
    117 rdf:type schema:MonetaryGrant
    118 sg:grant.7671741 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-021-00472-0
    119 rdf:type schema:MonetaryGrant
    120 sg:grant.8523794 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-021-00472-0
    121 rdf:type schema:MonetaryGrant
    122 sg:grant.8566350 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-021-00472-0
    123 rdf:type schema:MonetaryGrant
    124 sg:journal.1134206 schema:issn 1085-7117
    125 1537-2693
    126 schema:name Journal of Agricultural, Biological and Environmental Statistics
    127 schema:publisher Springer Nature
    128 rdf:type schema:Periodical
    129 sg:person.010662172737.28 schema:affiliation grid-institutes:grid.27860.3b
    130 schema:familyName Hwang
    131 schema:givenName Seungyong
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662172737.28
    133 rdf:type schema:Person
    134 sg:person.012515373317.48 schema:affiliation grid-institutes:grid.27860.3b
    135 schema:familyName Lai
    136 schema:givenName Randy C. S.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515373317.48
    138 rdf:type schema:Person
    139 sg:person.01306650334.27 schema:affiliation grid-institutes:grid.27860.3b
    140 schema:familyName Lee
    141 schema:givenName Thomas C. M.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306650334.27
    143 rdf:type schema:Person
    144 sg:pub.10.1007/0-387-33706-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041359822
    145 https://doi.org/10.1007/0-387-33706-7_10
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1186/1471-2288-14-95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005127519
    148 https://doi.org/10.1186/1471-2288-14-95
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1198/10857110152946802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045076770
    151 https://doi.org/10.1198/10857110152946802
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1198/108571105x46525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050151197
    154 https://doi.org/10.1198/108571105x46525
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1198/108571107x177690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010646923
    157 https://doi.org/10.1198/108571107x177690
    158 rdf:type schema:CreativeWork
    159 grid-institutes:grid.27860.3b schema:alternateName Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA
    160 schema:name Department of Statistics, University of California at Davis, One Shields Avenue, 95616, Davis, CA, USA
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...