Ontology type: schema:ScholarlyArticle
2021-08-04
AUTHORSJiafang Song, Joshua L. Warren
ABSTRACTPoint sources in spatially referenced data can impact outcomes in surrounding locations (e.g., a factory that emits air pollution). Previous statistical methods have sought to describe the non-stationary correlation induced by the presence of a point source, with fewer attempting to quantify its overall impact. We introduce directionally varying change points (DVCP), a model that aims to estimate the magnitude of the impact of a point source as well as its range of influence across the spatial domain. DVCP allows for a unique change point parameter, describing the range of influence of a point source, at every angle extending from the source and uses a Gaussian process with directionally defined correlation function to facilitate estimation of the parameters. The Gaussian predictive process approximation is used for fitting the model to large datasets. Through simulation, we show that DVCP can easily accommodate a wide range of shapes defining the range of influence. We apply DVCP to better understand spatial patterns of ambient PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2.5}$$\end{document} concentrations and issues related to environmental inequity in California and Colorado. The method is available in the R package DVCP.Supplementary materials accompanying this paper appear online. More... »
PAGES46-62
http://scigraph.springernature.com/pub.10.1007/s13253-021-00466-y
DOIhttp://dx.doi.org/10.1007/s13253-021-00466-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140185955
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Biostatistics, Yale University, 06510, New Haven, CT, USA",
"id": "http://www.grid.ac/institutes/grid.47100.32",
"name": [
"Department of Biostatistics, Yale University, 06510, New Haven, CT, USA"
],
"type": "Organization"
},
"familyName": "Song",
"givenName": "Jiafang",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Biostatistics, Yale University, 06510, New Haven, CT, USA",
"id": "http://www.grid.ac/institutes/grid.47100.32",
"name": [
"Department of Biostatistics, Yale University, 06510, New Haven, CT, USA"
],
"type": "Organization"
},
"familyName": "Warren",
"givenName": "Joshua L.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10888-011-9188-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030074871",
"https://doi.org/10.1007/s10888-011-9188-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41370-020-0219-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1125691133",
"https://doi.org/10.1038/s41370-020-0219-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12916-018-1111-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105673666",
"https://doi.org/10.1186/s12916-018-1111-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11004-011-9344-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029950168",
"https://doi.org/10.1007/s11004-011-9344-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13253-020-00404-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128970176",
"https://doi.org/10.1007/s13253-020-00404-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10651-012-0207-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006591609",
"https://doi.org/10.1007/s10651-012-0207-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13253-009-0004-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006023380",
"https://doi.org/10.1007/s13253-009-0004-z"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-08-04",
"datePublishedReg": "2021-08-04",
"description": "Point sources in spatially referenced data can impact outcomes in surrounding locations (e.g., a factory that emits air pollution). Previous statistical methods have sought to describe the non-stationary correlation induced by the presence of a point source, with fewer attempting to quantify its overall impact. We introduce directionally varying change points (DVCP), a model that aims to estimate the magnitude of the impact of a point source as well as its range of influence across the spatial domain. DVCP allows for a unique change point parameter, describing the range of influence of a point source, at every angle extending from the source and uses a Gaussian process with directionally defined correlation function to facilitate estimation of the parameters. The Gaussian predictive process approximation is used for fitting the model to large datasets. Through simulation, we show that DVCP can easily accommodate a wide range of shapes defining the range of influence. We apply DVCP to better understand spatial patterns of ambient PM2.5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2.5}$$\\end{document} concentrations and issues related to environmental inequity in California and Colorado. The method is available in the R package DVCP.Supplementary materials accompanying this paper appear online.",
"genre": "article",
"id": "sg:pub.10.1007/s13253-021-00466-y",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1134206",
"issn": [
"1085-7117",
"1537-2693"
],
"name": "Journal of Agricultural, Biological and Environmental Statistics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "27"
}
],
"keywords": [
"previous statistical methods",
"change point parameter",
"point sources",
"process approximation",
"Gaussian process",
"correlation functions",
"statistical methods",
"point parameters",
"non-stationary correlations",
"spatial domain",
"change points",
"supplementary material",
"DVCP",
"approximation",
"large datasets",
"model",
"parameters",
"range of influence",
"estimation",
"wide range",
"simulations",
"range",
"point",
"function",
"shape",
"spatial patterns",
"angle",
"ambient",
"magnitude",
"influence",
"quantifying",
"source",
"materials",
"domain",
"dataset",
"method",
"environmental inequity",
"data",
"process",
"location",
"correlation",
"impact",
"issues",
"presence",
"overall impact",
"concentration",
"patterns",
"Colorado",
"California",
"changes",
"outcomes",
"inequities",
"paper"
],
"name": "A Directionally Varying Change Points Model for Quantifying the Impact of a Point Source",
"pagination": "46-62",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140185955"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13253-021-00466-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13253-021-00466-y",
"https://app.dimensions.ai/details/publication/pub.1140185955"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_898.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13253-021-00466-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00466-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00466-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00466-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00466-y'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
22 PREDICATES
85 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s13253-021-00466-y | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | N83952d44e86d4365bf611278f2033ef7 |
4 | ″ | schema:citation | sg:pub.10.1007/s10651-012-0207-2 |
5 | ″ | ″ | sg:pub.10.1007/s10888-011-9188-x |
6 | ″ | ″ | sg:pub.10.1007/s11004-011-9344-7 |
7 | ″ | ″ | sg:pub.10.1007/s13253-009-0004-z |
8 | ″ | ″ | sg:pub.10.1007/s13253-020-00404-4 |
9 | ″ | ″ | sg:pub.10.1038/s41370-020-0219-1 |
10 | ″ | ″ | sg:pub.10.1186/s12916-018-1111-x |
11 | ″ | schema:datePublished | 2021-08-04 |
12 | ″ | schema:datePublishedReg | 2021-08-04 |
13 | ″ | schema:description | Point sources in spatially referenced data can impact outcomes in surrounding locations (e.g., a factory that emits air pollution). Previous statistical methods have sought to describe the non-stationary correlation induced by the presence of a point source, with fewer attempting to quantify its overall impact. We introduce directionally varying change points (DVCP), a model that aims to estimate the magnitude of the impact of a point source as well as its range of influence across the spatial domain. DVCP allows for a unique change point parameter, describing the range of influence of a point source, at every angle extending from the source and uses a Gaussian process with directionally defined correlation function to facilitate estimation of the parameters. The Gaussian predictive process approximation is used for fitting the model to large datasets. Through simulation, we show that DVCP can easily accommodate a wide range of shapes defining the range of influence. We apply DVCP to better understand spatial patterns of ambient PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2.5}$$\end{document} concentrations and issues related to environmental inequity in California and Colorado. The method is available in the R package DVCP.Supplementary materials accompanying this paper appear online. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | N61e22bf96ad64a48948e447f08ec680d |
18 | ″ | ″ | Ndf2c36e2991f4be3b54102e20991b25c |
19 | ″ | ″ | sg:journal.1134206 |
20 | ″ | schema:keywords | California |
21 | ″ | ″ | Colorado |
22 | ″ | ″ | DVCP |
23 | ″ | ″ | Gaussian process |
24 | ″ | ″ | ambient |
25 | ″ | ″ | angle |
26 | ″ | ″ | approximation |
27 | ″ | ″ | change point parameter |
28 | ″ | ″ | change points |
29 | ″ | ″ | changes |
30 | ″ | ″ | concentration |
31 | ″ | ″ | correlation |
32 | ″ | ″ | correlation functions |
33 | ″ | ″ | data |
34 | ″ | ″ | dataset |
35 | ″ | ″ | domain |
36 | ″ | ″ | environmental inequity |
37 | ″ | ″ | estimation |
38 | ″ | ″ | function |
39 | ″ | ″ | impact |
40 | ″ | ″ | inequities |
41 | ″ | ″ | influence |
42 | ″ | ″ | issues |
43 | ″ | ″ | large datasets |
44 | ″ | ″ | location |
45 | ″ | ″ | magnitude |
46 | ″ | ″ | materials |
47 | ″ | ″ | method |
48 | ″ | ″ | model |
49 | ″ | ″ | non-stationary correlations |
50 | ″ | ″ | outcomes |
51 | ″ | ″ | overall impact |
52 | ″ | ″ | paper |
53 | ″ | ″ | parameters |
54 | ″ | ″ | patterns |
55 | ″ | ″ | point |
56 | ″ | ″ | point parameters |
57 | ″ | ″ | point sources |
58 | ″ | ″ | presence |
59 | ″ | ″ | previous statistical methods |
60 | ″ | ″ | process |
61 | ″ | ″ | process approximation |
62 | ″ | ″ | quantifying |
63 | ″ | ″ | range |
64 | ″ | ″ | range of influence |
65 | ″ | ″ | shape |
66 | ″ | ″ | simulations |
67 | ″ | ″ | source |
68 | ″ | ″ | spatial domain |
69 | ″ | ″ | spatial patterns |
70 | ″ | ″ | statistical methods |
71 | ″ | ″ | supplementary material |
72 | ″ | ″ | wide range |
73 | ″ | schema:name | A Directionally Varying Change Points Model for Quantifying the Impact of a Point Source |
74 | ″ | schema:pagination | 46-62 |
75 | ″ | schema:productId | N7e64d8195af14700aa4557e3ef56aab4 |
76 | ″ | ″ | Ne32e5c1c9d50488689fc92f8d4d75914 |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140185955 |
78 | ″ | ″ | https://doi.org/10.1007/s13253-021-00466-y |
79 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | Naf5528cc2d2a41b1aa21716034b9189b |
82 | ″ | schema:url | https://doi.org/10.1007/s13253-021-00466-y |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | articles |
85 | ″ | rdf:type | schema:ScholarlyArticle |
86 | N07b45de6327e46ea848199578ff1902b | rdf:first | Ne1f5f25f8dea4142aea2cc8a15f82c63 |
87 | ″ | rdf:rest | rdf:nil |
88 | N156ef0a56015441692d2528cf9961389 | schema:affiliation | grid-institutes:grid.47100.32 |
89 | ″ | schema:familyName | Song |
90 | ″ | schema:givenName | Jiafang |
91 | ″ | rdf:type | schema:Person |
92 | N61e22bf96ad64a48948e447f08ec680d | schema:issueNumber | 1 |
93 | ″ | rdf:type | schema:PublicationIssue |
94 | N7e64d8195af14700aa4557e3ef56aab4 | schema:name | doi |
95 | ″ | schema:value | 10.1007/s13253-021-00466-y |
96 | ″ | rdf:type | schema:PropertyValue |
97 | N83952d44e86d4365bf611278f2033ef7 | rdf:first | N156ef0a56015441692d2528cf9961389 |
98 | ″ | rdf:rest | N07b45de6327e46ea848199578ff1902b |
99 | Naf5528cc2d2a41b1aa21716034b9189b | schema:name | Springer Nature - SN SciGraph project |
100 | ″ | rdf:type | schema:Organization |
101 | Ndf2c36e2991f4be3b54102e20991b25c | schema:volumeNumber | 27 |
102 | ″ | rdf:type | schema:PublicationVolume |
103 | Ne1f5f25f8dea4142aea2cc8a15f82c63 | schema:affiliation | grid-institutes:grid.47100.32 |
104 | ″ | schema:familyName | Warren |
105 | ″ | schema:givenName | Joshua L. |
106 | ″ | rdf:type | schema:Person |
107 | Ne32e5c1c9d50488689fc92f8d4d75914 | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1140185955 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Mathematical Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Statistics |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1134206 | schema:issn | 1085-7117 |
117 | ″ | ″ | 1537-2693 |
118 | ″ | schema:name | Journal of Agricultural, Biological and Environmental Statistics |
119 | ″ | schema:publisher | Springer Nature |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:pub.10.1007/s10651-012-0207-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006591609 |
122 | ″ | ″ | https://doi.org/10.1007/s10651-012-0207-2 |
123 | ″ | rdf:type | schema:CreativeWork |
124 | sg:pub.10.1007/s10888-011-9188-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030074871 |
125 | ″ | ″ | https://doi.org/10.1007/s10888-011-9188-x |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1007/s11004-011-9344-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029950168 |
128 | ″ | ″ | https://doi.org/10.1007/s11004-011-9344-7 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/s13253-009-0004-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006023380 |
131 | ″ | ″ | https://doi.org/10.1007/s13253-009-0004-z |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1007/s13253-020-00404-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128970176 |
134 | ″ | ″ | https://doi.org/10.1007/s13253-020-00404-4 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | sg:pub.10.1038/s41370-020-0219-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1125691133 |
137 | ″ | ″ | https://doi.org/10.1038/s41370-020-0219-1 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1186/s12916-018-1111-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1105673666 |
140 | ″ | ″ | https://doi.org/10.1186/s12916-018-1111-x |
141 | ″ | rdf:type | schema:CreativeWork |
142 | grid-institutes:grid.47100.32 | schema:alternateName | Department of Biostatistics, Yale University, 06510, New Haven, CT, USA |
143 | ″ | schema:name | Department of Biostatistics, Yale University, 06510, New Haven, CT, USA |
144 | ″ | rdf:type | schema:Organization |