Ontology type: schema:ScholarlyArticle Open Access: True
2021-07-23
AUTHORSDenis Allard, Lucia Clarotto, Thomas Opitz, Thomas Romary
ABSTRACTWe discuss the methods and results of the RESSTE team in the competition on spatial statistics for large datasets. In the first sub-competition, we implemented block approaches both for the estimation of the covariance parameters and for prediction using ordinary kriging. In the second sub-competition, a two-stage procedure was adopted. In the first stage, the marginal distribution is estimated neglecting spatial dependence, either according to the flexible Tuckey g and h distribution or nonparametrically. In the second stage, estimation of the covariance parameters and prediction are performed using Kriging. Vecchias’s approximation implemented in the GpGp package proved to be very efficient. We then make some propositions for future competitions. More... »
PAGES604-611
http://scigraph.springernature.com/pub.10.1007/s13253-021-00462-2
DOIhttp://dx.doi.org/10.1007/s13253-021-00462-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1139874912
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/34335011
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Biostatistics and Spatial Processes (BioSP), INRAE, 84914, Avignon, France",
"id": "http://www.grid.ac/institutes/grid.507621.7",
"name": [
"Biostatistics and Spatial Processes (BioSP), INRAE, 84914, Avignon, France"
],
"type": "Organization"
},
"familyName": "Allard",
"givenName": "Denis",
"id": "sg:person.010306151257.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306151257.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "MINES ParisTech, PSL University, Centre de Geosciences, 77300, Fontainebleau, France",
"id": "http://www.grid.ac/institutes/grid.463798.7",
"name": [
"MINES ParisTech, PSL University, Centre de Geosciences, 77300, Fontainebleau, France"
],
"type": "Organization"
},
"familyName": "Clarotto",
"givenName": "Lucia",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Biostatistics and Spatial Processes (BioSP), INRAE, 84914, Avignon, France",
"id": "http://www.grid.ac/institutes/grid.507621.7",
"name": [
"Biostatistics and Spatial Processes (BioSP), INRAE, 84914, Avignon, France"
],
"type": "Organization"
},
"familyName": "Opitz",
"givenName": "Thomas",
"id": "sg:person.01122321031.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122321031.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "MINES ParisTech, PSL University, Centre de Geosciences, 77300, Fontainebleau, France",
"id": "http://www.grid.ac/institutes/grid.463798.7",
"name": [
"MINES ParisTech, PSL University, Centre de Geosciences, 77300, Fontainebleau, France"
],
"type": "Organization"
},
"familyName": "Romary",
"givenName": "Thomas",
"id": "sg:person.014371355031.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371355031.11"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s13253-021-00457-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1139554777",
"https://doi.org/10.1007/s13253-021-00457-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11222-021-09999-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1135914830",
"https://doi.org/10.1007/s11222-021-09999-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-23",
"datePublishedReg": "2021-07-23",
"description": "We discuss the methods and results of the RESSTE team in the competition on spatial statistics for large datasets. In the first sub-competition, we implemented block approaches both for the estimation of the covariance parameters and for prediction using ordinary kriging. In the second sub-competition, a two-stage procedure was adopted. In the first stage, the marginal distribution is estimated neglecting spatial dependence, either according to the flexible Tuckey g and h distribution or nonparametrically. In the second stage, estimation of the covariance parameters and prediction are performed using Kriging. Vecchias\u2019s approximation implemented in the GpGp package proved to be very efficient. We then make some propositions for future competitions.",
"genre": "article",
"id": "sg:pub.10.1007/s13253-021-00462-2",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1134206",
"issn": [
"1085-7117",
"1537-2693"
],
"name": "Journal of Agricultural, Biological and Environmental Statistics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "26"
}
],
"keywords": [
"covariance parameters",
"Vecchia approximation",
"spatial statistics",
"marginal distributions",
"H distribution",
"spatial dependence",
"ordinary kriging",
"approximation",
"large datasets",
"kriging",
"two-stage procedure",
"statistics",
"estimation",
"parameters",
"prediction",
"distribution",
"block approach",
"second stage",
"first stage",
"dependence",
"package",
"dataset",
"approach",
"results",
"procedure",
"competition",
"discussion",
"stage",
"proposition",
"Tuckey",
"team",
"method",
"future competition"
],
"name": "Discussion on \u201cCompetition on Spatial Statistics for Large Datasets\u201d",
"pagination": "604-611",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1139874912"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13253-021-00462-2"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"34335011"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13253-021-00462-2",
"https://app.dimensions.ai/details/publication/pub.1139874912"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_916.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13253-021-00462-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00462-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00462-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00462-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00462-2'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
22 PREDICATES
61 URIs
51 LITERALS
7 BLANK NODES