Discussion on Competition for Spatial Statistics for Large Datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-24

AUTHORS

Roman Flury, Reinhard Furrer

ABSTRACT

We discuss the experiences and results of the AppStatUZH team’s participation in the comprehensive and unbiased comparison of different spatial approximations conducted in the Competition for Spatial Statistics for Large Datasets. In each of the different sub-competitions, we estimated parameters of the covariance model based on a likelihood function and predicted missing observations with simple kriging. We approximated the covariance model either with covariance tapering or a compactly supported Wendland covariance function. More... »

PAGES

599-603

References to SciGraph publications

  • 2021-07-08. Competition on Spatial Statistics for Large Datasets in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13253-021-00461-3

    DOI

    http://dx.doi.org/10.1007/s13253-021-00461-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139913578

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34720575


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Zurich, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Department of Mathematics, University of Zurich, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flury", 
            "givenName": "Roman", 
            "id": "sg:person.015227350537.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015227350537.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computational Science, University of Zurich, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Department of Mathematics, University of Zurich, Zurich, Switzerland", 
                "Department of Computational Science, University of Zurich, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furrer", 
            "givenName": "Reinhard", 
            "id": "sg:person.014147376517.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147376517.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13253-021-00457-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139554777", 
              "https://doi.org/10.1007/s13253-021-00457-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-24", 
        "datePublishedReg": "2021-07-24", 
        "description": "We discuss the experiences and results of the AppStatUZH team\u2019s participation in the comprehensive and unbiased comparison of different spatial approximations conducted in the Competition for Spatial Statistics for Large Datasets. In each of the different sub-competitions, we estimated parameters of the covariance model based on a likelihood function and predicted missing observations with simple kriging. We approximated the covariance model either with covariance tapering or a compactly supported Wendland covariance function.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13253-021-00461-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7161190", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1134206", 
            "issn": [
              "1085-7117", 
              "1537-2693"
            ], 
            "name": "Journal of Agricultural, Biological and Environmental Statistics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "competition", 
          "large datasets", 
          "unbiased comparison", 
          "function", 
          "dataset", 
          "observations", 
          "results", 
          "comparison", 
          "spatial statistics", 
          "covariance model", 
          "model", 
          "parameters", 
          "participation", 
          "spatial approximation", 
          "statistics", 
          "covariance tapering", 
          "discussion", 
          "approximation", 
          "likelihood function", 
          "simple kriging", 
          "kriging", 
          "tapering", 
          "covariance function", 
          "experience", 
          "team"
        ], 
        "name": "Discussion on Competition for Spatial Statistics for Large Datasets", 
        "pagination": "599-603", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139913578"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13253-021-00461-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34720575"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13253-021-00461-3", 
          "https://app.dimensions.ai/details/publication/pub.1139913578"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_916.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13253-021-00461-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00461-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00461-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00461-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-021-00461-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      22 PREDICATES      52 URIs      43 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13253-021-00461-3 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N0812c56e530a4bc6977bc6c8bb29a2c8
    4 schema:citation sg:pub.10.1007/s13253-021-00457-z
    5 schema:datePublished 2021-07-24
    6 schema:datePublishedReg 2021-07-24
    7 schema:description We discuss the experiences and results of the AppStatUZH team’s participation in the comprehensive and unbiased comparison of different spatial approximations conducted in the Competition for Spatial Statistics for Large Datasets. In each of the different sub-competitions, we estimated parameters of the covariance model based on a likelihood function and predicted missing observations with simple kriging. We approximated the covariance model either with covariance tapering or a compactly supported Wendland covariance function.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N076361e615c845c0aacd1ed694f9a356
    12 N3e138b1a4c2b433eafa6103912e5e06c
    13 sg:journal.1134206
    14 schema:keywords approximation
    15 comparison
    16 competition
    17 covariance function
    18 covariance model
    19 covariance tapering
    20 dataset
    21 discussion
    22 experience
    23 function
    24 kriging
    25 large datasets
    26 likelihood function
    27 model
    28 observations
    29 parameters
    30 participation
    31 results
    32 simple kriging
    33 spatial approximation
    34 spatial statistics
    35 statistics
    36 tapering
    37 team
    38 unbiased comparison
    39 schema:name Discussion on Competition for Spatial Statistics for Large Datasets
    40 schema:pagination 599-603
    41 schema:productId N600bd513620749df96eb7ba40d2c13fb
    42 Nb01765de501142e8af43afdf3d6e492c
    43 Nc5d393809d784a618ecdcee365137cb0
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139913578
    45 https://doi.org/10.1007/s13253-021-00461-3
    46 schema:sdDatePublished 2022-05-10T10:31
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N6cf9dbd1979f44e69c56217a310958ad
    49 schema:url https://doi.org/10.1007/s13253-021-00461-3
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N076361e615c845c0aacd1ed694f9a356 schema:issueNumber 4
    54 rdf:type schema:PublicationIssue
    55 N0812c56e530a4bc6977bc6c8bb29a2c8 rdf:first sg:person.015227350537.78
    56 rdf:rest Nfeeb9a6b941546b793e8db21819f9a05
    57 N3e138b1a4c2b433eafa6103912e5e06c schema:volumeNumber 26
    58 rdf:type schema:PublicationVolume
    59 N600bd513620749df96eb7ba40d2c13fb schema:name doi
    60 schema:value 10.1007/s13253-021-00461-3
    61 rdf:type schema:PropertyValue
    62 N6cf9dbd1979f44e69c56217a310958ad schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Nb01765de501142e8af43afdf3d6e492c schema:name dimensions_id
    65 schema:value pub.1139913578
    66 rdf:type schema:PropertyValue
    67 Nc5d393809d784a618ecdcee365137cb0 schema:name pubmed_id
    68 schema:value 34720575
    69 rdf:type schema:PropertyValue
    70 Nfeeb9a6b941546b793e8db21819f9a05 rdf:first sg:person.014147376517.67
    71 rdf:rest rdf:nil
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Statistics
    77 rdf:type schema:DefinedTerm
    78 sg:grant.7161190 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-021-00461-3
    79 rdf:type schema:MonetaryGrant
    80 sg:journal.1134206 schema:issn 1085-7117
    81 1537-2693
    82 schema:name Journal of Agricultural, Biological and Environmental Statistics
    83 schema:publisher Springer Nature
    84 rdf:type schema:Periodical
    85 sg:person.014147376517.67 schema:affiliation grid-institutes:grid.7400.3
    86 schema:familyName Furrer
    87 schema:givenName Reinhard
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147376517.67
    89 rdf:type schema:Person
    90 sg:person.015227350537.78 schema:affiliation grid-institutes:grid.7400.3
    91 schema:familyName Flury
    92 schema:givenName Roman
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015227350537.78
    94 rdf:type schema:Person
    95 sg:pub.10.1007/s13253-021-00457-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1139554777
    96 https://doi.org/10.1007/s13253-021-00457-z
    97 rdf:type schema:CreativeWork
    98 grid-institutes:grid.7400.3 schema:alternateName Department of Computational Science, University of Zurich, Zurich, Switzerland
    99 Department of Mathematics, University of Zurich, Zurich, Switzerland
    100 schema:name Department of Computational Science, University of Zurich, Zurich, Switzerland
    101 Department of Mathematics, University of Zurich, Zurich, Switzerland
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...