Bayesian Dynamic Linear Models for Estimation of Phenological Events from Remote Sensing Data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Margaret Johnson, Petruţa C. Caragea, Wendy Meiring, C. Jeganathan, Peter M. Atkinson

ABSTRACT

Estimating the timing of the occurrence of events that characterize growth cycles in vegetation from time series of remote sensing data is desirable for a wide area of applications. For example, the timings of plant life cycle events are very sensitive to weather conditions and are often used to assess the impacts of changes in weather and climate. Likewise, understanding crop phenology can have a large impact on agricultural strategies. To study phenology using remote sensing data, the timings of annual phenological events must be estimated from noisy time series that may have many missing values. Many current state-of-the-art methods consist of smoothing time series and estimating events as features of smoothed curves. A shortcoming of many of these methods is that they do not easily handle missing values and require imputation as a preprocessing step. In addition, while some currently used methods may be extendable to allow for temporal uncertainty quantification, uncertainty intervals are not usually provided with phenological event estimates. We propose methodology utilizing Bayesian dynamic linear models to estimate the timing of key phenological events from remote sensing data with uncertainty intervals. We illustrate the methodology on weekly vegetation index data from 2003 to 2007 over a region of southern India, focusing on estimating the timing of start of season and peak of greenness. Additionally, we present methods utilizing the Bayesian formulation and MCMC simulation of the model to estimate the probability that more than one growing season occurred in a given year. Supplementary materials accompanying this paper appear online. More... »

PAGES

1-25

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13253-018-00338-y

DOI

http://dx.doi.org/10.1007/s13253-018-00338-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108038933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Statistical and Applied Mathematical Sciences Institute", 
          "id": "https://www.grid.ac/institutes/grid.438085.2", 
          "name": [
            "Department of Statistics, North Carolina State University, 27695, Raleigh, NC, USA", 
            "The Statistical and Applied Mathematical Sciences Institute, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Margaret", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iowa State University", 
          "id": "https://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Department of Statistics, Iowa State University, Ames, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caragea", 
        "givenName": "Petru\u0163a C.", 
        "id": "sg:person.01113551624.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113551624.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meiring", 
        "givenName": "Wendy", 
        "id": "sg:person.014644047476.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644047476.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Remote Sensing, Birla Institute of Technology (BIT), Mesra, 835215, Ranchi, Jharkhand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeganathan", 
        "givenName": "C.", 
        "id": "sg:person.011141124161.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141124161.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geographic Sciences and Natural Resources Research", 
          "id": "https://www.grid.ac/institutes/grid.424975.9", 
          "name": [
            "Faculty of Science and Technology, Lancaster University, LA1 4YR, Lancaster, UK", 
            "School of Natural and Built Environment, Queen\u2019s University Belfast, BT7 1NN, Belfast, Northern Ireland, UK", 
            "Geography and Environmental Science, University of Southampton, Highfield, SO17 1BJ, Southampton, UK", 
            "Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atkinson", 
        "givenName": "Peter M.", 
        "id": "sg:person.0620314424.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620314424.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2009.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000074162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2010.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000693013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs5020982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002185726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420072884-c24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003252397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160500300297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005658476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0049-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006268841", 
          "https://doi.org/10.1007/s10584-011-0049-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2006.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009358304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2012.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009877078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.1101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025101185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2010.512303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026069820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00135-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026232550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00135-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026232550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-statistics-060116-054155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026557331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0143116042000274015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026567729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b135794_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027076188", 
          "https://doi.org/10.1007/b135794_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2005.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027721347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-25047-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956063", 
          "https://doi.org/10.1007/978-3-642-25047-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9892.1994.tb00184.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032135083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2004.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033371409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fenvs.2015.00056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039731600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-010-9490-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049332395", 
          "https://doi.org/10.1007/s10980-010-9490-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-010-9490-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049332395", 
          "https://doi.org/10.1007/s10980-010-9490-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050263978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051038054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/81.3.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2010.2075916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061332508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3662552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062137462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/06-ba117a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v040.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03053328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086068718", 
          "https://doi.org/10.1007/bf03053328"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Estimating the timing of the occurrence of events that characterize growth cycles in vegetation from time series of remote sensing data is desirable for a wide area of applications. For example, the timings of plant life cycle events are very sensitive to weather conditions and are often used to assess the impacts of changes in weather and climate. Likewise, understanding crop phenology can have a large impact on agricultural strategies. To study phenology using remote sensing data, the timings of annual phenological events must be estimated from noisy time series that may have many missing values. Many current state-of-the-art methods consist of smoothing time series and estimating events as features of smoothed curves. A shortcoming of many of these methods is that they do not easily handle missing values and require imputation as a preprocessing step. In addition, while some currently used methods may be extendable to allow for temporal uncertainty quantification, uncertainty intervals are not usually provided with phenological event estimates. We propose methodology utilizing Bayesian dynamic linear models to estimate the timing of key phenological events from remote sensing data with uncertainty intervals. We illustrate the methodology on weekly vegetation index data from 2003 to 2007 over a region of southern India, focusing on estimating the timing of start of season and peak of greenness. Additionally, we present methods utilizing the Bayesian formulation and MCMC simulation of the model to estimate the probability that more than one growing season occurred in a given year. Supplementary materials accompanying this paper appear online.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13253-018-00338-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6932935", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1134206", 
        "issn": [
          "1085-7117", 
          "1537-2693"
        ], 
        "name": "Journal of Agricultural, Biological and Environmental Statistics", 
        "type": "Periodical"
      }
    ], 
    "name": "Bayesian Dynamic Linear Models for Estimation of Phenological Events from Remote Sensing Data", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a10d964397f49046b4c38f0a7989cf809ef56503ec735dfd9e44d5d3cd013059"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13253-018-00338-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108038933"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13253-018-00338-y", 
      "https://app.dimensions.ai/details/publication/pub.1108038933"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13253-018-00338-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-018-00338-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-018-00338-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-018-00338-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-018-00338-y'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      54 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13253-018-00338-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N69ecf30b5dcc470091b09565ab8642ac
4 schema:citation sg:pub.10.1007/978-3-642-25047-7_4
5 sg:pub.10.1007/b135794_2
6 sg:pub.10.1007/bf03053328
7 sg:pub.10.1007/s10584-011-0049-1
8 sg:pub.10.1007/s10980-010-9490-1
9 https://doi.org/10.1002/env.1101
10 https://doi.org/10.1016/j.asr.2006.02.034
11 https://doi.org/10.1016/j.cageo.2004.05.006
12 https://doi.org/10.1016/j.isprsjprs.2009.03.001
13 https://doi.org/10.1016/j.isprsjprs.2012.01.004
14 https://doi.org/10.1016/j.rse.2005.03.008
15 https://doi.org/10.1016/j.rse.2010.01.021
16 https://doi.org/10.1016/j.rse.2012.04.001
17 https://doi.org/10.1016/j.rse.2015.04.014
18 https://doi.org/10.1016/s0034-4257(02)00135-9
19 https://doi.org/10.1080/0143116042000274015
20 https://doi.org/10.1080/01431160500300297
21 https://doi.org/10.1080/01431161.2010.512303
22 https://doi.org/10.1093/biomet/81.3.541
23 https://doi.org/10.1109/jstars.2010.2075916
24 https://doi.org/10.1111/1467-9868.00353
25 https://doi.org/10.1111/j.1467-9892.1994.tb00184.x
26 https://doi.org/10.1115/1.3662552
27 https://doi.org/10.1146/annurev-statistics-060116-054155
28 https://doi.org/10.1201/9781420072884-c24
29 https://doi.org/10.1214/06-ba117a
30 https://doi.org/10.18637/jss.v040.i08
31 https://doi.org/10.3389/fenvs.2015.00056
32 https://doi.org/10.3390/rs5020982
33 schema:datePublished 2019-03
34 schema:datePublishedReg 2019-03-01
35 schema:description Estimating the timing of the occurrence of events that characterize growth cycles in vegetation from time series of remote sensing data is desirable for a wide area of applications. For example, the timings of plant life cycle events are very sensitive to weather conditions and are often used to assess the impacts of changes in weather and climate. Likewise, understanding crop phenology can have a large impact on agricultural strategies. To study phenology using remote sensing data, the timings of annual phenological events must be estimated from noisy time series that may have many missing values. Many current state-of-the-art methods consist of smoothing time series and estimating events as features of smoothed curves. A shortcoming of many of these methods is that they do not easily handle missing values and require imputation as a preprocessing step. In addition, while some currently used methods may be extendable to allow for temporal uncertainty quantification, uncertainty intervals are not usually provided with phenological event estimates. We propose methodology utilizing Bayesian dynamic linear models to estimate the timing of key phenological events from remote sensing data with uncertainty intervals. We illustrate the methodology on weekly vegetation index data from 2003 to 2007 over a region of southern India, focusing on estimating the timing of start of season and peak of greenness. Additionally, we present methods utilizing the Bayesian formulation and MCMC simulation of the model to estimate the probability that more than one growing season occurred in a given year. Supplementary materials accompanying this paper appear online.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1134206
40 schema:name Bayesian Dynamic Linear Models for Estimation of Phenological Events from Remote Sensing Data
41 schema:pagination 1-25
42 schema:productId N42bebb75da1645e7b6ed3594c6894b57
43 N6794c66c73bc43feaed8a26ec32d8048
44 N82749c9c9f1b414a85f3dbc696bb8a01
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108038933
46 https://doi.org/10.1007/s13253-018-00338-y
47 schema:sdDatePublished 2019-04-10T23:35
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N60b9f5a133e648c4bba7ad7618264e25
50 schema:url https://link.springer.com/10.1007%2Fs13253-018-00338-y
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N2781c4bde5634c3dbaf23b7ef95ed859 rdf:first sg:person.014644047476.11
55 rdf:rest Ndb732194635741978fdfd2e9e9fbccc4
56 N42bebb75da1645e7b6ed3594c6894b57 schema:name doi
57 schema:value 10.1007/s13253-018-00338-y
58 rdf:type schema:PropertyValue
59 N51d858cb5c6c4216a7f6a0ea74cde197 schema:affiliation https://www.grid.ac/institutes/grid.438085.2
60 schema:familyName Johnson
61 schema:givenName Margaret
62 rdf:type schema:Person
63 N60b9f5a133e648c4bba7ad7618264e25 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N6794c66c73bc43feaed8a26ec32d8048 schema:name dimensions_id
66 schema:value pub.1108038933
67 rdf:type schema:PropertyValue
68 N69ecf30b5dcc470091b09565ab8642ac rdf:first N51d858cb5c6c4216a7f6a0ea74cde197
69 rdf:rest Na8d42292f09d48398f8cbdc66a5bdcca
70 N82749c9c9f1b414a85f3dbc696bb8a01 schema:name readcube_id
71 schema:value a10d964397f49046b4c38f0a7989cf809ef56503ec735dfd9e44d5d3cd013059
72 rdf:type schema:PropertyValue
73 N92e3a0790e48480dbd2c663e26f9cfbc rdf:first sg:person.0620314424.13
74 rdf:rest rdf:nil
75 Na8d42292f09d48398f8cbdc66a5bdcca rdf:first sg:person.01113551624.33
76 rdf:rest N2781c4bde5634c3dbaf23b7ef95ed859
77 Ndb732194635741978fdfd2e9e9fbccc4 rdf:first sg:person.011141124161.35
78 rdf:rest N92e3a0790e48480dbd2c663e26f9cfbc
79 Ne7e8e7d353e54b639a22fe1583f2ac65 schema:name Department of Remote Sensing, Birla Institute of Technology (BIT), Mesra, 835215, Ranchi, Jharkhand, India
80 rdf:type schema:Organization
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
85 schema:name Statistics
86 rdf:type schema:DefinedTerm
87 sg:grant.6932935 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-018-00338-y
88 rdf:type schema:MonetaryGrant
89 sg:journal.1134206 schema:issn 1085-7117
90 1537-2693
91 schema:name Journal of Agricultural, Biological and Environmental Statistics
92 rdf:type schema:Periodical
93 sg:person.01113551624.33 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
94 schema:familyName Caragea
95 schema:givenName Petruţa C.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113551624.33
97 rdf:type schema:Person
98 sg:person.011141124161.35 schema:affiliation Ne7e8e7d353e54b639a22fe1583f2ac65
99 schema:familyName Jeganathan
100 schema:givenName C.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141124161.35
102 rdf:type schema:Person
103 sg:person.014644047476.11 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
104 schema:familyName Meiring
105 schema:givenName Wendy
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644047476.11
107 rdf:type schema:Person
108 sg:person.0620314424.13 schema:affiliation https://www.grid.ac/institutes/grid.424975.9
109 schema:familyName Atkinson
110 schema:givenName Peter M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620314424.13
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-642-25047-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956063
114 https://doi.org/10.1007/978-3-642-25047-7_4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/b135794_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027076188
117 https://doi.org/10.1007/b135794_2
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf03053328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086068718
120 https://doi.org/10.1007/bf03053328
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10584-011-0049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006268841
123 https://doi.org/10.1007/s10584-011-0049-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10980-010-9490-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049332395
126 https://doi.org/10.1007/s10980-010-9490-1
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/env.1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025101185
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.asr.2006.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009358304
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cageo.2004.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033371409
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.isprsjprs.2009.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000074162
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.isprsjprs.2012.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009877078
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.rse.2005.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027721347
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.rse.2010.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000693013
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.rse.2012.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051038054
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.rse.2015.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050263978
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0034-4257(02)00135-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026232550
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/0143116042000274015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026567729
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/01431160500300297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005658476
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/01431161.2010.512303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026069820
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/biomet/81.3.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420499
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/jstars.2010.2075916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061332508
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/1467-9868.00353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288536
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1467-9892.1994.tb00184.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032135083
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1115/1.3662552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062137462
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1146/annurev-statistics-060116-054155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026557331
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1201/9781420072884-c24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003252397
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1214/06-ba117a schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389480
169 rdf:type schema:CreativeWork
170 https://doi.org/10.18637/jss.v040.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672602
171 rdf:type schema:CreativeWork
172 https://doi.org/10.3389/fenvs.2015.00056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039731600
173 rdf:type schema:CreativeWork
174 https://doi.org/10.3390/rs5020982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002185726
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
177 schema:name Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA, USA
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
180 schema:name Department of Statistics, Iowa State University, Ames, IA, USA
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.424975.9 schema:alternateName Institute of Geographic Sciences and Natural Resources Research
183 schema:name Faculty of Science and Technology, Lancaster University, LA1 4YR, Lancaster, UK
184 Geography and Environmental Science, University of Southampton, Highfield, SO17 1BJ, Southampton, UK
185 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, 100101, Beijing, China
186 School of Natural and Built Environment, Queen’s University Belfast, BT7 1NN, Belfast, Northern Ireland, UK
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.438085.2 schema:alternateName Statistical and Applied Mathematical Sciences Institute
189 schema:name Department of Statistics, North Carolina State University, 27695, Raleigh, NC, USA
190 The Statistical and Applied Mathematical Sciences Institute, Durham, NC, USA
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...