Analysing Mark–Recapture–Recovery Data in the Presence of Missing Covariate Data Via Multiple Imputation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-03

AUTHORS

Hannah Worthington, Ruth King, Stephen T. Buckland

ABSTRACT

We consider mark–recapture–recovery data with additional individual time-varying continuous covariate data. For such data it is common to specify the model parameters, and in particular the survival probabilities, as a function of these covariates to incorporate individual heterogeneity. However, an issue arises in relation to missing covariate values, for (at least) the times when an individual is not observed, leading to an analytically intractable likelihood. We propose a two-step multiple imputation approach to obtain estimates of the demographic parameters. Firstly, a model is fitted to only the observed covariate values. Conditional on the fitted covariate model, multiple “complete” datasets are generated (i.e. all missing covariate values are imputed). Secondly, for each complete dataset, a closed form complete data likelihood can be maximised to obtain estimates of the model parameters which are subsequently combined to obtain an overall estimate of the parameters. Associated standard errors and 95 % confidence intervals are obtained using a non-parametric bootstrap. A simulation study is undertaken to assess the performance of the proposed two-step approach. We apply the method to data collected on a well-studied population of Soay sheep and compare the results with a Bayesian data augmentation approach. Supplementary materials accompanying this paper appear on-line. More... »

PAGES

28-46

References to SciGraph publications

  • 2004-03. Sexual dimorphism, survival and dispersal in red deer in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 2009-09. Flexible hierarchical mark-recapture modeling for open populations using WinBUGS in ENVIRONMENTAL AND ECOLOGICAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13253-014-0184-z

    DOI

    http://dx.doi.org/10.1007/s13253-014-0184-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025007592


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of St Andrews", 
              "id": "https://www.grid.ac/institutes/grid.11914.3c", 
              "name": [
                "School of Mathematics and Statistics and Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, KY16 9LZ, Fife, Scotland, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Worthington", 
            "givenName": "Hannah", 
            "id": "sg:person.011714765022.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714765022.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of St Andrews", 
              "id": "https://www.grid.ac/institutes/grid.11914.3c", 
              "name": [
                "School of Mathematics and Statistics and Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, KY16 9LZ, Fife, Scotland, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "King", 
            "givenName": "Ruth", 
            "id": "sg:person.0710241704.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710241704.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of St Andrews", 
              "id": "https://www.grid.ac/institutes/grid.11914.3c", 
              "name": [
                "School of Mathematics and Statistics and Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, KY16 9LZ, Fife, Scotland, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buckland", 
            "givenName": "Stephen T.", 
            "id": "sg:person.01325713462.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325713462.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2005.00399.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005686070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00063659909477239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007628710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0006-341x.2002.00841.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008602939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2041-210x.2012.00265.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011229525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2007.00644.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011984947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2010.01390.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016320642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2008.00991.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020345818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsfs.2011.0078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020644363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-statistics-022513-115633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032049700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2005.00404.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037496330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/0012-9658(2003)084[1058:amcmfm]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041612750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10651-007-0069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045973348", 
              "https://doi.org/10.1007/s10651-007-0069-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9876.00205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046242401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9876.00205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046242401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1198/1085711043172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050853000", 
              "https://doi.org/10.1198/1085711043172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/51.3-4.429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/52.1-2.225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/52.1-2.249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/13-aoas644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064393666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1938741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069662635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2530260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069975795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2530926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069976403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2532259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069977681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2532510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069977919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2532612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069978022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2533993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069979166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2684656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070057990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119013563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107030376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109410984", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781439811887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109410984"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-03", 
        "datePublishedReg": "2015-03-01", 
        "description": "We consider mark\u2013recapture\u2013recovery data with additional individual time-varying continuous covariate data. For such data it is common to specify the model parameters, and in particular the survival probabilities, as a function of these covariates to incorporate individual heterogeneity. However, an issue arises in relation to missing covariate values, for (at least) the times when an individual is not observed, leading to an analytically intractable likelihood. We propose a two-step multiple imputation approach to obtain estimates of the demographic parameters. Firstly, a model is fitted to only the observed covariate values. Conditional on the fitted covariate model, multiple \u201ccomplete\u201d datasets are generated (i.e. all missing covariate values are imputed). Secondly, for each complete dataset, a closed form complete data likelihood can be maximised to obtain estimates of the model parameters which are subsequently combined to obtain an overall estimate of the parameters. Associated standard errors and 95 % confidence intervals are obtained using a non-parametric bootstrap. A simulation study is undertaken to assess the performance of the proposed two-step approach. We apply the method to data collected on a well-studied population of Soay sheep and compare the results with a Bayesian data augmentation approach. Supplementary materials accompanying this paper appear on-line.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13253-014-0184-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2771231", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2777056", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1134206", 
            "issn": [
              "1085-7117", 
              "1537-2693"
            ], 
            "name": "Journal of Agricultural, Biological and Environmental Statistics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Analysing Mark\u2013Recapture\u2013Recovery Data in the Presence of Missing Covariate Data Via Multiple Imputation", 
        "pagination": "28-46", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77229cd5207812be6dd10ec4ba58045fbf805e4ce49e768ceabe64496c2fe978"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13253-014-0184-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025007592"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13253-014-0184-z", 
          "https://app.dimensions.ai/details/publication/pub.1025007592"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000587.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs13253-014-0184-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-014-0184-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-014-0184-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-014-0184-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-014-0184-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    167 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13253-014-0184-z schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Na423ca5ec628408da7ba9f462c380a27
    4 schema:citation sg:pub.10.1007/s10651-007-0069-1
    5 sg:pub.10.1198/1085711043172
    6 https://app.dimensions.ai/details/publication/pub.1109410984
    7 https://doi.org/10.1002/9781119013563
    8 https://doi.org/10.1080/00063659909477239
    9 https://doi.org/10.1093/biomet/51.3-4.429
    10 https://doi.org/10.1093/biomet/52.1-2.225
    11 https://doi.org/10.1093/biomet/52.1-2.249
    12 https://doi.org/10.1098/rsfs.2011.0078
    13 https://doi.org/10.1111/1467-9876.00205
    14 https://doi.org/10.1111/j.0006-341x.2002.00841.x
    15 https://doi.org/10.1111/j.1467-9868.2007.00644.x
    16 https://doi.org/10.1111/j.1541-0420.2005.00399.x
    17 https://doi.org/10.1111/j.1541-0420.2005.00404.x
    18 https://doi.org/10.1111/j.1541-0420.2008.00991.x
    19 https://doi.org/10.1111/j.1541-0420.2010.01390.x
    20 https://doi.org/10.1111/j.2041-210x.2012.00265.x
    21 https://doi.org/10.1146/annurev-statistics-022513-115633
    22 https://doi.org/10.1201/9781439811887
    23 https://doi.org/10.1214/13-aoas644
    24 https://doi.org/10.1890/0012-9658(2003)084[1058:amcmfm]2.0.co;2
    25 https://doi.org/10.2307/1938741
    26 https://doi.org/10.2307/2530260
    27 https://doi.org/10.2307/2530926
    28 https://doi.org/10.2307/2532259
    29 https://doi.org/10.2307/2532510
    30 https://doi.org/10.2307/2532612
    31 https://doi.org/10.2307/2533993
    32 https://doi.org/10.2307/2684656
    33 schema:datePublished 2015-03
    34 schema:datePublishedReg 2015-03-01
    35 schema:description We consider mark–recapture–recovery data with additional individual time-varying continuous covariate data. For such data it is common to specify the model parameters, and in particular the survival probabilities, as a function of these covariates to incorporate individual heterogeneity. However, an issue arises in relation to missing covariate values, for (at least) the times when an individual is not observed, leading to an analytically intractable likelihood. We propose a two-step multiple imputation approach to obtain estimates of the demographic parameters. Firstly, a model is fitted to only the observed covariate values. Conditional on the fitted covariate model, multiple “complete” datasets are generated (i.e. all missing covariate values are imputed). Secondly, for each complete dataset, a closed form complete data likelihood can be maximised to obtain estimates of the model parameters which are subsequently combined to obtain an overall estimate of the parameters. Associated standard errors and 95 % confidence intervals are obtained using a non-parametric bootstrap. A simulation study is undertaken to assess the performance of the proposed two-step approach. We apply the method to data collected on a well-studied population of Soay sheep and compare the results with a Bayesian data augmentation approach. Supplementary materials accompanying this paper appear on-line.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N560e2e7f68e5474ba7e29fff467ef4aa
    40 Neef9f2521c2b4f3b8e912d816995e092
    41 sg:journal.1134206
    42 schema:name Analysing Mark–Recapture–Recovery Data in the Presence of Missing Covariate Data Via Multiple Imputation
    43 schema:pagination 28-46
    44 schema:productId N521e1fa5b4824400a91105d17f3f29ce
    45 N645c9fa6391b46498c9c1e90aa3bed4e
    46 Nd8ce9ccb08754f598e2b98d53f88cddc
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025007592
    48 https://doi.org/10.1007/s13253-014-0184-z
    49 schema:sdDatePublished 2019-04-10T13:29
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N9d4f76ffb8e64c1d8d881ad290e29965
    52 schema:url http://link.springer.com/10.1007%2Fs13253-014-0184-z
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N0eef2328acf3444abe50a0d25ab98690 rdf:first sg:person.0710241704.36
    57 rdf:rest Ndb81c92c4adb4aca88f21919907e8f86
    58 N521e1fa5b4824400a91105d17f3f29ce schema:name doi
    59 schema:value 10.1007/s13253-014-0184-z
    60 rdf:type schema:PropertyValue
    61 N560e2e7f68e5474ba7e29fff467ef4aa schema:issueNumber 1
    62 rdf:type schema:PublicationIssue
    63 N645c9fa6391b46498c9c1e90aa3bed4e schema:name dimensions_id
    64 schema:value pub.1025007592
    65 rdf:type schema:PropertyValue
    66 N9d4f76ffb8e64c1d8d881ad290e29965 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Na423ca5ec628408da7ba9f462c380a27 rdf:first sg:person.011714765022.80
    69 rdf:rest N0eef2328acf3444abe50a0d25ab98690
    70 Nd8ce9ccb08754f598e2b98d53f88cddc schema:name readcube_id
    71 schema:value 77229cd5207812be6dd10ec4ba58045fbf805e4ce49e768ceabe64496c2fe978
    72 rdf:type schema:PropertyValue
    73 Ndb81c92c4adb4aca88f21919907e8f86 rdf:first sg:person.01325713462.52
    74 rdf:rest rdf:nil
    75 Neef9f2521c2b4f3b8e912d816995e092 schema:volumeNumber 20
    76 rdf:type schema:PublicationVolume
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Statistics
    82 rdf:type schema:DefinedTerm
    83 sg:grant.2771231 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-014-0184-z
    84 rdf:type schema:MonetaryGrant
    85 sg:grant.2777056 http://pending.schema.org/fundedItem sg:pub.10.1007/s13253-014-0184-z
    86 rdf:type schema:MonetaryGrant
    87 sg:journal.1134206 schema:issn 1085-7117
    88 1537-2693
    89 schema:name Journal of Agricultural, Biological and Environmental Statistics
    90 rdf:type schema:Periodical
    91 sg:person.011714765022.80 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
    92 schema:familyName Worthington
    93 schema:givenName Hannah
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714765022.80
    95 rdf:type schema:Person
    96 sg:person.01325713462.52 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
    97 schema:familyName Buckland
    98 schema:givenName Stephen T.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325713462.52
    100 rdf:type schema:Person
    101 sg:person.0710241704.36 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
    102 schema:familyName King
    103 schema:givenName Ruth
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710241704.36
    105 rdf:type schema:Person
    106 sg:pub.10.1007/s10651-007-0069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045973348
    107 https://doi.org/10.1007/s10651-007-0069-1
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1198/1085711043172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050853000
    110 https://doi.org/10.1198/1085711043172
    111 rdf:type schema:CreativeWork
    112 https://app.dimensions.ai/details/publication/pub.1109410984 schema:CreativeWork
    113 https://doi.org/10.1002/9781119013563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107030376
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1080/00063659909477239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007628710
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1093/biomet/51.3-4.429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417385
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1093/biomet/52.1-2.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417435
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1093/biomet/52.1-2.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417436
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1098/rsfs.2011.0078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020644363
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1111/1467-9876.00205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046242401
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1111/j.0006-341x.2002.00841.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008602939
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1111/j.1467-9868.2007.00644.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011984947
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1111/j.1541-0420.2005.00399.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005686070
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1111/j.1541-0420.2005.00404.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037496330
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1111/j.1541-0420.2008.00991.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020345818
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1111/j.1541-0420.2010.01390.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016320642
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1111/j.2041-210x.2012.00265.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011229525
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1146/annurev-statistics-022513-115633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032049700
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1201/9781439811887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109410984
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1214/13-aoas644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393666
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1890/0012-9658(2003)084[1058:amcmfm]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041612750
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.2307/1938741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069662635
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.2307/2530260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975795
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.2307/2530926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069976403
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.2307/2532259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977681
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.2307/2532510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977919
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.2307/2532612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978022
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.2307/2533993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069979166
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.2307/2684656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070057990
    164 rdf:type schema:CreativeWork
    165 https://www.grid.ac/institutes/grid.11914.3c schema:alternateName University of St Andrews
    166 schema:name School of Mathematics and Statistics and Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, KY16 9LZ, Fife, Scotland, UK
    167 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...