Functional Concurrent Linear Regression Model for Spatial Images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Jun Zhang, Murray K. Clayton, Philip A. Townsend

ABSTRACT

Motivated by a problem in describing forest nitrogen cycling, in this paper we explore regression models for spatial images. Specifically, we present a functional concurrent linear model with varying coefficients for two-dimensional spatial images. To address overparameterization issues, the parameter surfaces in this model are transformed into the wavelet domain and a sparse representation is found by using a large-scale l1 constrained least squares algorithm. Once the sparse representation is identified, an inverse wavelet transform is applied to obtain the estimated parameter surfaces. The optimal penalization term in the objective function is determined using the Bayesian Information Criterion (BIC) and we introduce measures of model quality. Our model is versatile and can be applied to both single and multiple replicate cases. More... »

PAGES

105-130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13253-010-0047-1

DOI

http://dx.doi.org/10.1007/s13253-010-0047-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039155006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Statistical and Applied Mathematical Sciences Institute", 
          "id": "https://www.grid.ac/institutes/grid.438085.2", 
          "name": [
            "Statistical and Applied Mathematical Sciences Institute, 19 T.W. Alexander Drive, 27709-4006, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Statistics, University of Wisconsin-Madison, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clayton", 
        "givenName": "Murray K.", 
        "id": "sg:person.01207702637.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207702637.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Townsend", 
        "givenName": "Philip A.", 
        "id": "sg:person.0765354312.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765354312.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1002284157", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-6950-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002284157", 
          "https://doi.org/10.1007/978-1-4899-6950-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-6950-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002284157", 
          "https://doi.org/10.1007/978-1-4899-6950-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98wr01198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002768507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(20000415)19:7<957::aid-sim396>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006091181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/02-5356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013542338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2377::aid-sim576>3.0.co;2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016157327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2377::aid-sim576>3.0.co;2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016157327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/81.3.425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016957463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2004.b5595.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020512975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1641/0006-3568(2002)052[0335:idanci]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021501974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022356842", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(03)00111-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025647359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(03)00111-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025647359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029774765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029940453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5183/jjscs1988.15.2_307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034483490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl031387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037621874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x77-058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038293633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053604000000067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038945634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051152616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ee/23.3.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059499199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.75515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.750566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2007.910971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061337752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2007.909108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061651585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753382273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214503000170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000001031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053607000000127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-ba607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176324456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1390657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069468148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2337341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069896257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093612978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acssc.1993.342465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095254645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750306920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099106577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.1027629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102240138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420050011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109411205"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "Motivated by a problem in describing forest nitrogen cycling, in this paper we explore regression models for spatial images. Specifically, we present a functional concurrent linear model with varying coefficients for two-dimensional spatial images. To address overparameterization issues, the parameter surfaces in this model are transformed into the wavelet domain and a sparse representation is found by using a large-scale l1 constrained least squares algorithm. Once the sparse representation is identified, an inverse wavelet transform is applied to obtain the estimated parameter surfaces. The optimal penalization term in the objective function is determined using the Bayesian Information Criterion (BIC) and we introduce measures of model quality. Our model is versatile and can be applied to both single and multiple replicate cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13253-010-0047-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134206", 
        "issn": [
          "1085-7117", 
          "1537-2693"
        ], 
        "name": "Journal of Agricultural, Biological and Environmental Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Functional Concurrent Linear Regression Model for Spatial Images", 
    "pagination": "105-130", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba8380c2a7b5cc2a7502bb67b0767958b64e1b142d5ba536e5c5bdd26f4a8111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13253-010-0047-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039155006"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13253-010-0047-1", 
      "https://app.dimensions.ai/details/publication/pub.1039155006"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13253-010-0047-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13253-010-0047-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13253-010-0047-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13253-010-0047-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13253-010-0047-1'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13253-010-0047-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nece61b8ed1ee4229ba6d2b7b356a7bf0
4 schema:citation sg:pub.10.1007/978-0-387-21606-5
5 sg:pub.10.1007/978-1-4899-6950-7
6 https://app.dimensions.ai/details/publication/pub.1002284157
7 https://app.dimensions.ai/details/publication/pub.1022356842
8 https://doi.org/10.1002/(sici)1097-0258(20000415)19:7<957::aid-sim396>3.0.co;2-q
9 https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2377::aid-sim576>3.0.co;2-1
10 https://doi.org/10.1002/sim.1067
11 https://doi.org/10.1016/s0378-3758(03)00111-3
12 https://doi.org/10.1029/2007gl031387
13 https://doi.org/10.1029/98wr01198
14 https://doi.org/10.1093/biomet/81.3.425
15 https://doi.org/10.1093/biostatistics/4.1.11
16 https://doi.org/10.1093/ee/23.3.699
17 https://doi.org/10.1109/34.75515
18 https://doi.org/10.1109/72.750566
19 https://doi.org/10.1109/78.258082
20 https://doi.org/10.1109/acssc.1993.342465
21 https://doi.org/10.1109/cvpr.2006.143
22 https://doi.org/10.1109/jstsp.2007.910971
23 https://doi.org/10.1109/tit.2007.909108
24 https://doi.org/10.1111/1467-9868.00111
25 https://doi.org/10.1111/j.1467-9868.2004.b5595.x
26 https://doi.org/10.1139/x77-058
27 https://doi.org/10.1198/016214501753382273
28 https://doi.org/10.1198/016214503000170
29 https://doi.org/10.1198/016214506000000735
30 https://doi.org/10.1198/016214506000001031
31 https://doi.org/10.1201/9781420050011
32 https://doi.org/10.1214/009053604000000067
33 https://doi.org/10.1214/009053607000000127
34 https://doi.org/10.1214/10-ba607
35 https://doi.org/10.1214/aos/1176324456
36 https://doi.org/10.1641/0006-3568(2002)052[0335:idanci]2.0.co;2
37 https://doi.org/10.1887/0750306920
38 https://doi.org/10.1890/02-5356
39 https://doi.org/10.2139/ssrn.1027629
40 https://doi.org/10.2307/1390657
41 https://doi.org/10.2307/2337341
42 https://doi.org/10.5183/jjscs1988.15.2_307
43 schema:datePublished 2011-03
44 schema:datePublishedReg 2011-03-01
45 schema:description Motivated by a problem in describing forest nitrogen cycling, in this paper we explore regression models for spatial images. Specifically, we present a functional concurrent linear model with varying coefficients for two-dimensional spatial images. To address overparameterization issues, the parameter surfaces in this model are transformed into the wavelet domain and a sparse representation is found by using a large-scale l1 constrained least squares algorithm. Once the sparse representation is identified, an inverse wavelet transform is applied to obtain the estimated parameter surfaces. The optimal penalization term in the objective function is determined using the Bayesian Information Criterion (BIC) and we introduce measures of model quality. Our model is versatile and can be applied to both single and multiple replicate cases.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N6ad9978708f149ce9c39ceea8969b804
50 Nae679f20041b4bd98a02fcff3065628c
51 sg:journal.1134206
52 schema:name Functional Concurrent Linear Regression Model for Spatial Images
53 schema:pagination 105-130
54 schema:productId N80b70110e7c443f285a3fb26bf6eb6dc
55 Nbcbe4195e97c4361a37442add35644bb
56 Nd852e79e5a3d47eebfe23b95f4b023a8
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039155006
58 https://doi.org/10.1007/s13253-010-0047-1
59 schema:sdDatePublished 2019-04-10T20:58
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N8668cc1a517d41c8ab9391a3625d5c76
62 schema:url http://link.springer.com/10.1007%2Fs13253-010-0047-1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N293173300b164341b6e634c2f3f75cf2 rdf:first sg:person.01207702637.71
67 rdf:rest N818e19ede19e4e2ba491648550c2224b
68 N6ad9978708f149ce9c39ceea8969b804 schema:volumeNumber 16
69 rdf:type schema:PublicationVolume
70 N80b70110e7c443f285a3fb26bf6eb6dc schema:name readcube_id
71 schema:value ba8380c2a7b5cc2a7502bb67b0767958b64e1b142d5ba536e5c5bdd26f4a8111
72 rdf:type schema:PropertyValue
73 N818e19ede19e4e2ba491648550c2224b rdf:first sg:person.0765354312.29
74 rdf:rest rdf:nil
75 N8668cc1a517d41c8ab9391a3625d5c76 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nae679f20041b4bd98a02fcff3065628c schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Nbcbe4195e97c4361a37442add35644bb schema:name dimensions_id
80 schema:value pub.1039155006
81 rdf:type schema:PropertyValue
82 Nd3b637d007be4322adeb31a2f4215c0c schema:affiliation https://www.grid.ac/institutes/grid.438085.2
83 schema:familyName Zhang
84 schema:givenName Jun
85 rdf:type schema:Person
86 Nd852e79e5a3d47eebfe23b95f4b023a8 schema:name doi
87 schema:value 10.1007/s13253-010-0047-1
88 rdf:type schema:PropertyValue
89 Nece61b8ed1ee4229ba6d2b7b356a7bf0 rdf:first Nd3b637d007be4322adeb31a2f4215c0c
90 rdf:rest N293173300b164341b6e634c2f3f75cf2
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:journal.1134206 schema:issn 1085-7117
98 1537-2693
99 schema:name Journal of Agricultural, Biological and Environmental Statistics
100 rdf:type schema:Periodical
101 sg:person.01207702637.71 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
102 schema:familyName Clayton
103 schema:givenName Murray K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207702637.71
105 rdf:type schema:Person
106 sg:person.0765354312.29 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
107 schema:familyName Townsend
108 schema:givenName Philip A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765354312.29
110 rdf:type schema:Person
111 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
112 https://doi.org/10.1007/978-0-387-21606-5
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-1-4899-6950-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002284157
115 https://doi.org/10.1007/978-1-4899-6950-7
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1002284157 schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1022356842 schema:CreativeWork
119 https://doi.org/10.1002/(sici)1097-0258(20000415)19:7<957::aid-sim396>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1006091181
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2377::aid-sim576>3.0.co;2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016157327
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/sim.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051152616
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0378-3758(03)00111-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025647359
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1029/2007gl031387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037621874
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1029/98wr01198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002768507
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/biomet/81.3.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016957463
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/biostatistics/4.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029774765
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/ee/23.3.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059499199
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/34.75515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156936
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/72.750566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219165
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/acssc.1993.342465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095254645
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/cvpr.2006.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093612978
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/jstsp.2007.910971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337752
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tit.2007.909108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061651585
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/1467-9868.00111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029940453
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/j.1467-9868.2004.b5595.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020512975
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1139/x77-058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038293633
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1198/016214501753382273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197908
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1198/016214503000170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198107
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1198/016214506000000735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198542
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1198/016214506000001031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198572
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1201/9781420050011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109411205
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1214/009053604000000067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038945634
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1214/009053607000000127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389040
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1214/10-ba607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391576
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1214/aos/1176324456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406585
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1641/0006-3568(2002)052[0335:idanci]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021501974
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1887/0750306920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099106577
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1890/02-5356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013542338
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2139/ssrn.1027629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102240138
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2307/1390657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069468148
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2307/2337341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896257
186 rdf:type schema:CreativeWork
187 https://doi.org/10.5183/jjscs1988.15.2_307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034483490
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
190 schema:name Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 53706, Madison, WI, USA
191 Department of Statistics, University of Wisconsin-Madison, 53706, Madison, WI, USA
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.438085.2 schema:alternateName Statistical and Applied Mathematical Sciences Institute
194 schema:name Statistical and Applied Mathematical Sciences Institute, 19 T.W. Alexander Drive, 27709-4006, Research Triangle Park, NC, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...