A knowledge-based system for brain tumor segmentation using only 3D FLAIR images. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-08

AUTHORS

Yalda Amirmoezzi, Sina Salehi, Hossein Parsaei, Kamran Kazemi, Amin Torabi Jahromi

ABSTRACT

This study aims to develop a semi-automatic system for brain tumor segmentation in 3D MR images. For a given image, noise was corrected using SUSAN algorithm first. A specific region of interest (ROI) that contains tumor was identified and then the intensity non-uniformity in ROI was corrected via the histogram normalization and intensity scaling. Each voxel in ROI was presented using 22 features and then was categorized as tumor or non-tumor by a multiple-classifier system. T1- and T2-weighted images and fluid-attenuated inversion recovery (FLAIR) were examined. The system performance in terms of Dice index (DI), sensitivity (SE) and specificity (SP) was evaluated using 150 simulated and 30 real images from the BraTS 2012 database. The results showed that the presented system with an average DI > 0.85, SE > 0.90, and SP > 0.98 for simulated data and DI > 0.80, SE > 0.84, and SP > 0.98 for real data might be used for accurate extraction of the brain tumors. Moreover, this system is 6 times faster than a similar system that processes the whole image. In comparison with two state-of-the-art tumor segmentation methods, our system improved DI (e.g., by 0.31 for low-grade tumors) and outperformed these algorithms. Considering the costs of imaging procedures, tumor identification accuracy and computation times, the proposed system that augmented general pathological information about tumors and used only 4 features of FLAIR images can be suggested as a brain tumor segmentation system for clinical applications. More... »

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13246-019-00754-5

DOI

http://dx.doi.org/10.1007/s13246-019-00754-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113301191

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30963459


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shiraz University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.412571.4", 
          "name": [
            "Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amirmoezzi", 
        "givenName": "Yalda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.412571.4", 
          "name": [
            "Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salehi", 
        "givenName": "Sina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.412571.4", 
          "name": [
            "Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran. hparsaei@sums.ac.ir.", 
            "Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. hparsaei@sums.ac.ir."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parsaei", 
        "givenName": "Hossein", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444860.a", 
          "name": [
            "Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazemi", 
        "givenName": "Kamran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Electrical and Electronic Engineering Group, Engineering College, Persian Gulf University, Bushehr, Iran."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torabi Jahromi", 
        "givenName": "Amin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1007963824710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002264728", 
          "https://doi.org/10.1023/a:1007963824710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-016-1483-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003307306", 
          "https://doi.org/10.1007/s11517-016-1483-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2016.09.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007236334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010161634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12938-015-0064-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010938052", 
          "https://doi.org/10.1186/s12938-015-0064-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12938-015-0064-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010938052", 
          "https://doi.org/10.1186/s12938-015-0064-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2013.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012419450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2009.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023322760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23626-6_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023529549", 
          "https://doi.org/10.1007/978-3-642-23626-6_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23626-6_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023529549", 
          "https://doi.org/10.1007/978-3-642-23626-6_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tst.2014.6961028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2016.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028121501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2015.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029415949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/450341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01897163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036731841", 
          "https://doi.org/10.1007/bf01897163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01897163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036731841", 
          "https://doi.org/10.1007/bf01897163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-784-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044115486", 
          "https://doi.org/10.1007/978-1-84628-784-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-784-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044115486", 
          "https://doi.org/10.1007/978-1-84628-784-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2011.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044389178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.42836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.377929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2181857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2014.2377694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2538465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218001408006764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062949774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17485/ijst/2015/v8i29/83379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068338041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1932409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13246-018-0702-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107924748", 
          "https://doi.org/10.1007/s13246-018-0702-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13246-018-0702-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107924748", 
          "https://doi.org/10.1007/s13246-018-0702-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-08", 
    "datePublishedReg": "2019-04-08", 
    "description": "This study aims to develop a semi-automatic system for brain tumor segmentation in 3D MR images. For a given image, noise was corrected using SUSAN algorithm\u00a0first. A\u00a0specific region of interest (ROI) that contains tumor was identified and then the intensity non-uniformity in ROI was corrected via the histogram normalization and intensity scaling. Each voxel in ROI was presented using 22 features and then was categorized as tumor or non-tumor by a multiple-classifier system. T1- and T2-weighted images and fluid-attenuated inversion recovery (FLAIR) were examined. The system performance in terms of Dice index (DI), sensitivity (SE) and specificity (SP) was evaluated using 150 simulated and 30 real images from the BraTS 2012 database. The results showed that the presented system with an average DI\u2009>\u20090.85, SE\u2009>\u20090.90, and SP\u2009>\u20090.98 for simulated data and DI\u2009>\u20090.80, SE\u2009>\u20090.84, and SP\u2009>\u20090.98 for real data might be used for accurate extraction of the brain tumors. Moreover, this system is 6\u00a0times faster than a similar system that processes the whole image. In comparison with two state-of-the-art tumor segmentation methods, our system improved DI (e.g., by 0.31 for low-grade tumors) and outperformed these algorithms. Considering the costs of imaging procedures, tumor identification accuracy and computation times, the proposed system that augmented general pathological information about tumors and used only 4 features of FLAIR images can be suggested as a brain tumor segmentation system for clinical applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13246-019-00754-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1093172", 
        "issn": [
          "0158-9938", 
          "1879-5447"
        ], 
        "name": "Australasian Physical & Engineering Sciences in Medicine", 
        "type": "Periodical"
      }
    ], 
    "name": "A knowledge-based system for brain tumor segmentation using only 3D FLAIR images.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13246-019-00754-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113301191"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8208130"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30963459"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13246-019-00754-5", 
      "https://app.dimensions.ai/details/publication/pub.1113301191"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119754_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13246-019-00754-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00754-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00754-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00754-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00754-5'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      20 PREDICATES      49 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13246-019-00754-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd023e0aa240c46b29a665c29fda96742
4 schema:citation sg:pub.10.1007/978-1-84628-784-8_22
5 sg:pub.10.1007/978-3-642-23626-6_44
6 sg:pub.10.1007/bf01897163
7 sg:pub.10.1007/s11517-016-1483-z
8 sg:pub.10.1007/s13246-018-0702-3
9 sg:pub.10.1023/a:1007963824710
10 sg:pub.10.1186/s12938-015-0064-y
11 https://doi.org/10.1016/j.cmpb.2011.07.015
12 https://doi.org/10.1016/j.compeleceng.2015.02.007
13 https://doi.org/10.1016/j.compmedimag.2009.04.006
14 https://doi.org/10.1016/j.compmedimag.2013.05.007
15 https://doi.org/10.1016/j.eswa.2014.01.021
16 https://doi.org/10.1016/j.media.2016.05.004
17 https://doi.org/10.1016/j.procs.2016.09.407
18 https://doi.org/10.1016/s0004-3702(97)00043-x
19 https://doi.org/10.1109/34.42836
20 https://doi.org/10.1109/36.377929
21 https://doi.org/10.1109/tmi.2011.2181857
22 https://doi.org/10.1109/tmi.2014.2377694
23 https://doi.org/10.1109/tmi.2016.2538465
24 https://doi.org/10.1109/tst.2014.6961028
25 https://doi.org/10.1142/s0218001408006764
26 https://doi.org/10.1155/2015/450341
27 https://doi.org/10.17485/ijst/2015/v8i29/83379
28 https://doi.org/10.2307/1932409
29 schema:datePublished 2019-04-08
30 schema:datePublishedReg 2019-04-08
31 schema:description This study aims to develop a semi-automatic system for brain tumor segmentation in 3D MR images. For a given image, noise was corrected using SUSAN algorithm first. A specific region of interest (ROI) that contains tumor was identified and then the intensity non-uniformity in ROI was corrected via the histogram normalization and intensity scaling. Each voxel in ROI was presented using 22 features and then was categorized as tumor or non-tumor by a multiple-classifier system. T1- and T2-weighted images and fluid-attenuated inversion recovery (FLAIR) were examined. The system performance in terms of Dice index (DI), sensitivity (SE) and specificity (SP) was evaluated using 150 simulated and 30 real images from the BraTS 2012 database. The results showed that the presented system with an average DI > 0.85, SE > 0.90, and SP > 0.98 for simulated data and DI > 0.80, SE > 0.84, and SP > 0.98 for real data might be used for accurate extraction of the brain tumors. Moreover, this system is 6 times faster than a similar system that processes the whole image. In comparison with two state-of-the-art tumor segmentation methods, our system improved DI (e.g., by 0.31 for low-grade tumors) and outperformed these algorithms. Considering the costs of imaging procedures, tumor identification accuracy and computation times, the proposed system that augmented general pathological information about tumors and used only 4 features of FLAIR images can be suggested as a brain tumor segmentation system for clinical applications.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1093172
36 schema:name A knowledge-based system for brain tumor segmentation using only 3D FLAIR images.
37 schema:productId N6d3d8229053d41749b3d3a2015e3526b
38 N7875b40012134cb99710a499c11cd740
39 Nc668c1057d2443b7aeb25d75892bf9cc
40 Nd06d0543429347bcb02a8c37a5210cb6
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113301191
42 https://doi.org/10.1007/s13246-019-00754-5
43 schema:sdDatePublished 2019-04-15T08:54
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N30fc0286c5af41738c59e182257c6ae0
46 schema:url http://link.springer.com/10.1007/s13246-019-00754-5
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N12cd3a90ae584747b4f6ab1a24569f20 schema:affiliation https://www.grid.ac/institutes/grid.444860.a
51 schema:familyName Kazemi
52 schema:givenName Kamran
53 rdf:type schema:Person
54 N1d04b5d63b8d4d29a805f7a7ff8533a8 rdf:first Ndcf2df4841ce4b83849418fb6fa91989
55 rdf:rest Nce00a787dfb948c1a0a589193b313842
56 N286611b123df40e58405af3b4740e429 schema:affiliation https://www.grid.ac/institutes/grid.412571.4
57 schema:familyName Amirmoezzi
58 schema:givenName Yalda
59 rdf:type schema:Person
60 N30fc0286c5af41738c59e182257c6ae0 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N3992b0eb3ba9473ca13dbdcd45419cdf rdf:first N4c55b2eddb214603b2a0af0686af8630
63 rdf:rest rdf:nil
64 N4c55b2eddb214603b2a0af0686af8630 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
65 schema:familyName Torabi Jahromi
66 schema:givenName Amin
67 rdf:type schema:Person
68 N6d3d8229053d41749b3d3a2015e3526b schema:name dimensions_id
69 schema:value pub.1113301191
70 rdf:type schema:PropertyValue
71 N7875b40012134cb99710a499c11cd740 schema:name nlm_unique_id
72 schema:value 8208130
73 rdf:type schema:PropertyValue
74 N858f3f73b3524636bb1c12e239b3143c rdf:first Nc8c4d6c360cb40c69e1e5597be29cf84
75 rdf:rest N1d04b5d63b8d4d29a805f7a7ff8533a8
76 Nc668c1057d2443b7aeb25d75892bf9cc schema:name pubmed_id
77 schema:value 30963459
78 rdf:type schema:PropertyValue
79 Nc8c4d6c360cb40c69e1e5597be29cf84 schema:affiliation https://www.grid.ac/institutes/grid.412571.4
80 schema:familyName Salehi
81 schema:givenName Sina
82 rdf:type schema:Person
83 Nce00a787dfb948c1a0a589193b313842 rdf:first N12cd3a90ae584747b4f6ab1a24569f20
84 rdf:rest N3992b0eb3ba9473ca13dbdcd45419cdf
85 Nd023e0aa240c46b29a665c29fda96742 rdf:first N286611b123df40e58405af3b4740e429
86 rdf:rest N858f3f73b3524636bb1c12e239b3143c
87 Nd06d0543429347bcb02a8c37a5210cb6 schema:name doi
88 schema:value 10.1007/s13246-019-00754-5
89 rdf:type schema:PropertyValue
90 Ndcf2df4841ce4b83849418fb6fa91989 schema:affiliation https://www.grid.ac/institutes/grid.412571.4
91 schema:familyName Parsaei
92 schema:givenName Hossein
93 rdf:type schema:Person
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1093172 schema:issn 0158-9938
101 1879-5447
102 schema:name Australasian Physical & Engineering Sciences in Medicine
103 rdf:type schema:Periodical
104 sg:pub.10.1007/978-1-84628-784-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044115486
105 https://doi.org/10.1007/978-1-84628-784-8_22
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-642-23626-6_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529549
108 https://doi.org/10.1007/978-3-642-23626-6_44
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01897163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036731841
111 https://doi.org/10.1007/bf01897163
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11517-016-1483-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003307306
114 https://doi.org/10.1007/s11517-016-1483-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s13246-018-0702-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107924748
117 https://doi.org/10.1007/s13246-018-0702-3
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1007963824710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002264728
120 https://doi.org/10.1023/a:1007963824710
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/s12938-015-0064-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010938052
123 https://doi.org/10.1186/s12938-015-0064-y
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cmpb.2011.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044389178
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.compeleceng.2015.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029415949
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.compmedimag.2009.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023322760
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.compmedimag.2013.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012419450
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.eswa.2014.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010161634
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.media.2016.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028121501
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.procs.2016.09.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007236334
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0004-3702(97)00043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014012
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/34.42836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156275
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/36.377929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161228
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tmi.2011.2181857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695856
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tmi.2014.2377694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696449
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tmi.2016.2538465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696721
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tst.2014.6961028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150087
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1142/s0218001408006764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062949774
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1155/2015/450341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033466530
156 rdf:type schema:CreativeWork
157 https://doi.org/10.17485/ijst/2015/v8i29/83379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068338041
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2307/1932409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656769
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
162 schema:name Electrical and Electronic Engineering Group, Engineering College, Persian Gulf University, Bushehr, Iran.
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.412571.4 schema:alternateName Shiraz University of Medical Sciences
165 schema:name Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran.
166 Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran. hparsaei@sums.ac.ir.
167 Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
168 Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. hparsaei@sums.ac.ir.
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.444860.a schema:alternateName Shiraz University of Technology
171 schema:name Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran.
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...