Effective temporal resolution and image quality of volume scanning in 320-row detector CT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-07

AUTHORS

Atsushi Urikura, Takanori Hara, Tsukasa Yoshida, Eiji Nishimaru, Takashi Hoshino, Katsuhiro Ichikawa, Yoshihiro Nakaya, Masahiro Endo

ABSTRACT

To measure the effective temporal resolution (eTR) and image quality for three reconstruction modes for non-helical volume scanning in area detector CT. Temporal sensitivity profiles (TSPs) were obtained and the full width of the TSP at half maximum was used as an index of the eTR. Image quality was assessed by image noise and the corrected artifact index. The half reconstruction mode had a higher eTR than the full and automatic patient motion collection (APMC) reconstructions. Compared to full reconstruction, the image noise with APMC and half reconstruction were increased by 16% and 35%. The corrected artifact index was lowest with APMC. The square root of full width at tenth maximum of the TSP showed a high coefficient of determination (R2 = 0.934) for image noise. This study revealed the TSPs and eTRs for non-helical volume scanning in area detector CT. A high eTR resulted in higher image noise. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13246-019-00747-4

DOI

http://dx.doi.org/10.1007/s13246-019-00747-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112607127

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30847725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shizuoka Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.415797.9", 
          "name": [
            "Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, 411-8777, Sunto, Shizuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Urikura", 
        "givenName": "Atsushi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medical Technology, Nakatsugawa Municipal General Hospital, 1522-1 Komanba, 508-0011, Nakatsugawa, Gifu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Takanori", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shizuoka Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.415797.9", 
          "name": [
            "Division of Radiation and Proton Therapy Center, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, 411-8777, Sunto, Shizuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Tsukasa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470097.d", 
          "name": [
            "Department of Radiology, Hiroshima University Hospital, 1-2-3, Kasumi, 734-8551, Minami-ku, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimaru", 
        "givenName": "Eiji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiological Technology, Osaka College of High Technology, 1-2-8 Miyahara, Yodogawa-ku, 532-0003, Osaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoshino", 
        "givenName": "Takashi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa University", 
          "id": "https://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Division of Health Sciences, Kanazawa University Graduate of Medical Sciences, 5-11-80 Kodatsuno, 920-0942, Kanazawa, Ishikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ichikawa", 
        "givenName": "Katsuhiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shizuoka Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.415797.9", 
          "name": [
            "Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, 411-8777, Sunto, Shizuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakaya", 
        "givenName": "Yoshihiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shizuoka Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.415797.9", 
          "name": [
            "Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, 411-8777, Sunto, Shizuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Endo", 
        "givenName": "Masahiro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.598951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002695296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10140-015-1365-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004404529", 
          "https://doi.org/10.1007/s10140-015-1365-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-009-1436-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005292564", 
          "https://doi.org/10.1007/s00247-009-1436-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-009-1436-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005292564", 
          "https://doi.org/10.1007/s00247-009-1436-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-009-1436-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005292564", 
          "https://doi.org/10.1007/s00247-009-1436-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2016.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005525877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3930-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008772644", 
          "https://doi.org/10.1007/s00330-015-3930-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1561286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011961147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2011.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014044180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-013-0218-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346906", 
          "https://doi.org/10.1007/s12194-013-0218-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-013-0218-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346906", 
          "https://doi.org/10.1007/s12194-013-0218-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-011-2169-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019934848", 
          "https://doi.org/10.1007/s00247-011-2169-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2013.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020287161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2015.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025514018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026415285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-016-0563-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028080293", 
          "https://doi.org/10.1007/s11604-016-0563-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-016-0563-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028080293", 
          "https://doi.org/10.1007/s11604-016-0563-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bmt.2012.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358194", 
          "https://doi.org/10.1038/bmt.2012.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318260941a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030949090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318260941a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030949090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3819-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035305093", 
          "https://doi.org/10.1007/s00330-015-3819-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2016.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046180853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2016.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046180853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20130388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.184.4.01841225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-017-1237-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091602041", 
          "https://doi.org/10.1007/s10554-017-1237-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-07", 
    "datePublishedReg": "2019-03-07", 
    "description": "To measure the effective temporal resolution (eTR) and image quality for three reconstruction modes for non-helical volume scanning in area detector CT. Temporal sensitivity profiles (TSPs) were obtained and the full width of the TSP at half maximum was used as an index of the eTR. Image quality was assessed by image noise and the corrected artifact index. The half reconstruction mode had a higher eTR than the full and automatic patient motion collection (APMC) reconstructions. Compared to full reconstruction, the image noise with APMC and half reconstruction were increased by 16% and 35%. The corrected artifact index was lowest with APMC. The square root of full width at tenth maximum of the TSP showed a high coefficient of determination (R2\u2009=\u20090.934) for image noise. This study revealed the TSPs and eTRs for non-helical volume scanning in area detector CT. A high eTR resulted in higher image noise.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13246-019-00747-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1093172", 
        "issn": [
          "0158-9938", 
          "1879-5447"
        ], 
        "name": "Australasian Physical & Engineering Sciences in Medicine", 
        "type": "Periodical"
      }
    ], 
    "name": "Effective temporal resolution and image quality of volume scanning in 320-row detector CT", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04e504d27a7f3c60a030e62d14a837c794a879dba1aef7f5eb03c6bd6fedf23a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30847725"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8208130"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13246-019-00747-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112607127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13246-019-00747-4", 
      "https://app.dimensions.ai/details/publication/pub.1112607127"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11731_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13246-019-00747-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00747-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00747-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00747-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13246-019-00747-4'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      46 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13246-019-00747-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndc12003eb7164dc1899d4191b7d1720b
4 schema:citation sg:pub.10.1007/s00247-009-1436-x
5 sg:pub.10.1007/s00247-011-2169-1
6 sg:pub.10.1007/s00330-015-3819-8
7 sg:pub.10.1007/s00330-015-3930-x
8 sg:pub.10.1007/s10140-015-1365-y
9 sg:pub.10.1007/s10554-017-1237-5
10 sg:pub.10.1007/s11604-016-0563-1
11 sg:pub.10.1007/s12194-013-0218-1
12 sg:pub.10.1038/bmt.2012.244
13 https://doi.org/10.1016/j.acra.2011.12.001
14 https://doi.org/10.1016/j.ejmp.2015.02.012
15 https://doi.org/10.1016/j.ejmp.2016.02.015
16 https://doi.org/10.1016/j.ejmp.2016.07.003
17 https://doi.org/10.1016/j.ejrad.2013.02.024
18 https://doi.org/10.1016/j.jcct.2016.03.007
19 https://doi.org/10.1097/rct.0b013e318260941a
20 https://doi.org/10.1118/1.1561286
21 https://doi.org/10.1118/1.598951
22 https://doi.org/10.1259/bjr.20130388
23 https://doi.org/10.2214/ajr.184.4.01841225
24 schema:datePublished 2019-03-07
25 schema:datePublishedReg 2019-03-07
26 schema:description To measure the effective temporal resolution (eTR) and image quality for three reconstruction modes for non-helical volume scanning in area detector CT. Temporal sensitivity profiles (TSPs) were obtained and the full width of the TSP at half maximum was used as an index of the eTR. Image quality was assessed by image noise and the corrected artifact index. The half reconstruction mode had a higher eTR than the full and automatic patient motion collection (APMC) reconstructions. Compared to full reconstruction, the image noise with APMC and half reconstruction were increased by 16% and 35%. The corrected artifact index was lowest with APMC. The square root of full width at tenth maximum of the TSP showed a high coefficient of determination (R<sup>2</sup> = 0.934) for image noise. This study revealed the TSPs and eTRs for non-helical volume scanning in area detector CT. A high eTR resulted in higher image noise.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf sg:journal.1093172
31 schema:name Effective temporal resolution and image quality of volume scanning in 320-row detector CT
32 schema:pagination 1-8
33 schema:productId N0eb8fca252ca4e98b02bb1fca2e1ffc3
34 N111da2ca0b1940fb965c2a78045b7079
35 N3350122b699d47bb83038296c517950c
36 N99ba743c155d4e0ba43c23838a07c93f
37 Nc38aa9578c514339bc930cc5a74dbc47
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112607127
39 https://doi.org/10.1007/s13246-019-00747-4
40 schema:sdDatePublished 2019-04-11T11:22
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N09e174ef054745cabd6bae8888fb2173
43 schema:url https://link.springer.com/10.1007%2Fs13246-019-00747-4
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N09e174ef054745cabd6bae8888fb2173 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N0eb8fca252ca4e98b02bb1fca2e1ffc3 schema:name doi
50 schema:value 10.1007/s13246-019-00747-4
51 rdf:type schema:PropertyValue
52 N111da2ca0b1940fb965c2a78045b7079 schema:name pubmed_id
53 schema:value 30847725
54 rdf:type schema:PropertyValue
55 N26c108ba1a5845708c6a2195ad779527 schema:affiliation N8451b92abace428b979df4776bec824f
56 schema:familyName Hara
57 schema:givenName Takanori
58 rdf:type schema:Person
59 N3350122b699d47bb83038296c517950c schema:name readcube_id
60 schema:value 04e504d27a7f3c60a030e62d14a837c794a879dba1aef7f5eb03c6bd6fedf23a
61 rdf:type schema:PropertyValue
62 N35b26890aa1146e183ff8076274baed6 rdf:first Nb03a15cb38bf42ebac755b426502ae17
63 rdf:rest N9d77353fd0ce40a09ceb549148289ce1
64 N381860efaa394ce085dd111eed0e7403 schema:affiliation https://www.grid.ac/institutes/grid.470097.d
65 schema:familyName Nishimaru
66 schema:givenName Eiji
67 rdf:type schema:Person
68 N4c231db2a36b44ee8f13546d6979bd26 schema:affiliation https://www.grid.ac/institutes/grid.415797.9
69 schema:familyName Endo
70 schema:givenName Masahiro
71 rdf:type schema:Person
72 N514378547d934fce93a301e9cee4bdfe rdf:first N4c231db2a36b44ee8f13546d6979bd26
73 rdf:rest rdf:nil
74 N5879025f5d5c4ca39ec3b8814b89b3c8 schema:affiliation https://www.grid.ac/institutes/grid.415797.9
75 schema:familyName Nakaya
76 schema:givenName Yoshihiro
77 rdf:type schema:Person
78 N5906f893c8514f819268e883c6c82f85 schema:affiliation https://www.grid.ac/institutes/grid.415797.9
79 schema:familyName Yoshida
80 schema:givenName Tsukasa
81 rdf:type schema:Person
82 N75f3cba03c574ab7b1a0859112259a9d rdf:first N26c108ba1a5845708c6a2195ad779527
83 rdf:rest N7865f4f2f7414b25a797a9cf3643ce78
84 N7865f4f2f7414b25a797a9cf3643ce78 rdf:first N5906f893c8514f819268e883c6c82f85
85 rdf:rest Nb61ca1bf71464598bacf8db3fe9fc1f2
86 N7cd88b6d0ace44fdb2a8a51155713862 rdf:first Naa3245aedf2a45feb0c8a68abd5189a7
87 rdf:rest N35b26890aa1146e183ff8076274baed6
88 N8451b92abace428b979df4776bec824f schema:name Department of Medical Technology, Nakatsugawa Municipal General Hospital, 1522-1 Komanba, 508-0011, Nakatsugawa, Gifu, Japan
89 rdf:type schema:Organization
90 N99ba743c155d4e0ba43c23838a07c93f schema:name nlm_unique_id
91 schema:value 8208130
92 rdf:type schema:PropertyValue
93 N9d77353fd0ce40a09ceb549148289ce1 rdf:first N5879025f5d5c4ca39ec3b8814b89b3c8
94 rdf:rest N514378547d934fce93a301e9cee4bdfe
95 Naa3245aedf2a45feb0c8a68abd5189a7 schema:affiliation Nc7d219c8de184454849035ee62bed74f
96 schema:familyName Hoshino
97 schema:givenName Takashi
98 rdf:type schema:Person
99 Nb03a15cb38bf42ebac755b426502ae17 schema:affiliation https://www.grid.ac/institutes/grid.9707.9
100 schema:familyName Ichikawa
101 schema:givenName Katsuhiro
102 rdf:type schema:Person
103 Nb61ca1bf71464598bacf8db3fe9fc1f2 rdf:first N381860efaa394ce085dd111eed0e7403
104 rdf:rest N7cd88b6d0ace44fdb2a8a51155713862
105 Nc38aa9578c514339bc930cc5a74dbc47 schema:name dimensions_id
106 schema:value pub.1112607127
107 rdf:type schema:PropertyValue
108 Nc7d219c8de184454849035ee62bed74f schema:name Department of Radiological Technology, Osaka College of High Technology, 1-2-8 Miyahara, Yodogawa-ku, 532-0003, Osaka, Osaka, Japan
109 rdf:type schema:Organization
110 Ndc12003eb7164dc1899d4191b7d1720b rdf:first Nfbea2a225aa044909aec51d9ed3b8dae
111 rdf:rest N75f3cba03c574ab7b1a0859112259a9d
112 Nfbea2a225aa044909aec51d9ed3b8dae schema:affiliation https://www.grid.ac/institutes/grid.415797.9
113 schema:familyName Urikura
114 schema:givenName Atsushi
115 rdf:type schema:Person
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
120 schema:name Artificial Intelligence and Image Processing
121 rdf:type schema:DefinedTerm
122 sg:journal.1093172 schema:issn 0158-9938
123 1879-5447
124 schema:name Australasian Physical & Engineering Sciences in Medicine
125 rdf:type schema:Periodical
126 sg:pub.10.1007/s00247-009-1436-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005292564
127 https://doi.org/10.1007/s00247-009-1436-x
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00247-011-2169-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019934848
130 https://doi.org/10.1007/s00247-011-2169-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00330-015-3819-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035305093
133 https://doi.org/10.1007/s00330-015-3819-8
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00330-015-3930-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008772644
136 https://doi.org/10.1007/s00330-015-3930-x
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10140-015-1365-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004404529
139 https://doi.org/10.1007/s10140-015-1365-y
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10554-017-1237-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091602041
142 https://doi.org/10.1007/s10554-017-1237-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11604-016-0563-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028080293
145 https://doi.org/10.1007/s11604-016-0563-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s12194-013-0218-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018346906
148 https://doi.org/10.1007/s12194-013-0218-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/bmt.2012.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358194
151 https://doi.org/10.1038/bmt.2012.244
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.acra.2011.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014044180
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ejmp.2015.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025514018
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ejmp.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026415285
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ejmp.2016.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005525877
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ejrad.2013.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020287161
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jcct.2016.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046180853
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1097/rct.0b013e318260941a schema:sameAs https://app.dimensions.ai/details/publication/pub.1030949090
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1118/1.1561286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011961147
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1118/1.598951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695296
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1259/bjr.20130388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565149
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2214/ajr.184.4.01841225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326822
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.415797.9 schema:alternateName Shizuoka Cancer Center
176 schema:name Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, 411-8777, Sunto, Shizuoka, Japan
177 Division of Radiation and Proton Therapy Center, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, 411-8777, Sunto, Shizuoka, Japan
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.470097.d schema:alternateName Hiroshima University Hospital
180 schema:name Department of Radiology, Hiroshima University Hospital, 1-2-3, Kasumi, 734-8551, Minami-ku, Hiroshima, Japan
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.9707.9 schema:alternateName Kanazawa University
183 schema:name Division of Health Sciences, Kanazawa University Graduate of Medical Sciences, 5-11-80 Kodatsuno, 920-0942, Kanazawa, Ishikawa, Japan
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...