Quantification of iron concentration in the liver by MRI View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12-30

AUTHORS

José María Alústiza Echeverría, Agustín Castiella, José Ignacio Emparanza

ABSTRACT

ObjectiveMeasurement of liver iron concentration is a key parameter for the management of patients with primary and secondary haemochromatosis. Magnetic resonance imaging (MRI) has already demonstrated high accuracy to quantify liver iron content. To be able to improve the current management of patients that are found to have iron overload, we need a reproducible, standardised method that is, or can easily be made, widely available.MethodsThis article discusses the different MRI techniques and models to quantify liver iron concentration that are currently available and envisaged for the near future from a realistic perspective.ResultsT2 relaxometry methods are more accurate than signal intensity ratio (SIR) methods and they are reproducible but are not yet standardised or widely available. SIR methods, on the other hand, are very specific for all levels of iron overload and, what is more, they are also reproducible, standardised and already widely available.ConclusionsFor these reasons, today, both methods remain necessary while progress is made towards universal standardisation of the relaxometry technique. More... »

PAGES

173-180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13244-011-0132-1

DOI

http://dx.doi.org/10.1007/s13244-011-0132-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040739257

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22696043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osatek-Donostia Hospital, P. Dr. Beguiristain 109, 20014, San Sebasti\u00e1n, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Osatek-Donostia Hospital, P. Dr. Beguiristain 109, 20014, San Sebasti\u00e1n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al\u00fastiza Echeverr\u00eda", 
        "givenName": "Jos\u00e9 Mar\u00eda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gastroenterology Unity Mendaro Hospital, Mendaro, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Gastroenterology Unity Mendaro Hospital, Mendaro, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castiella", 
        "givenName": "Agust\u00edn", 
        "id": "sg:person.01215646126.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215646126.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinic Epidemiology Unity, Donostia Hospital, San Sebasti\u00e1n, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Clinic Epidemiology Unity, Donostia Hospital, San Sebasti\u00e1n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emparanza", 
        "givenName": "Jos\u00e9 Ignacio", 
        "id": "sg:person.012067262567.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067262567.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-010-1899-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051544141", 
          "https://doi.org/10.1007/s00330-010-1899-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-007-0567-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052361779", 
          "https://doi.org/10.1007/s00247-007-0567-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-30", 
    "datePublishedReg": "2011-12-30", 
    "description": "ObjectiveMeasurement of liver iron concentration is a key parameter for the management of patients with primary and secondary haemochromatosis. Magnetic resonance imaging (MRI) has already demonstrated high accuracy to quantify liver iron content. To be able to improve the current management of patients that are found to have iron overload, we need a reproducible, standardised method that is, or can easily be made, widely available.MethodsThis article discusses the different MRI techniques and models to quantify liver iron concentration that are currently available and envisaged for the near future from a realistic perspective.ResultsT2 relaxometry methods are more accurate than signal intensity ratio (SIR) methods and they are reproducible but are not yet standardised or widely available. SIR methods, on the other hand, are very specific for all levels of iron overload and, what is more, they are also reproducible, standardised and already widely available.ConclusionsFor these reasons, today, both methods remain necessary while progress is made towards universal standardisation of the relaxometry technique.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13244-011-0132-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043606", 
        "issn": [
          "1869-4101"
        ], 
        "name": "Insights into Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "magnetic resonance imaging", 
      "liver iron concentration", 
      "iron overload", 
      "management of patients", 
      "different MRI techniques", 
      "liver iron content", 
      "signal intensity ratio method", 
      "secondary haemochromatosis", 
      "resonance imaging", 
      "current management", 
      "universal standardisation", 
      "MRI techniques", 
      "iron concentration", 
      "MethodsThis article", 
      "patients", 
      "overload", 
      "standardised method", 
      "haemochromatosis", 
      "liver", 
      "ObjectiveMeasurement", 
      "management", 
      "relaxometry technique", 
      "concentration", 
      "imaging", 
      "iron content", 
      "levels", 
      "near future", 
      "standardisation", 
      "method", 
      "relaxometry methods", 
      "reasons", 
      "quantification", 
      "hand", 
      "technique", 
      "realistic perspective", 
      "progress", 
      "future", 
      "article", 
      "content", 
      "model", 
      "perspective", 
      "parameters", 
      "ratio method", 
      "accuracy", 
      "high accuracy", 
      "today", 
      "SIR method", 
      "key parameters", 
      "intensity ratio method"
    ], 
    "name": "Quantification of iron concentration in the liver by MRI", 
    "pagination": "173-180", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040739257"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13244-011-0132-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22696043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13244-011-0132-1", 
      "https://app.dimensions.ai/details/publication/pub.1040739257"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13244-011-0132-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13244-011-0132-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13244-011-0132-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13244-011-0132-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13244-011-0132-1'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      75 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13244-011-0132-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N40058e2eb50e4b4b8fd611b3c454ff15
4 schema:citation sg:pub.10.1007/s00247-007-0567-1
5 sg:pub.10.1007/s00330-010-1899-z
6 schema:datePublished 2011-12-30
7 schema:datePublishedReg 2011-12-30
8 schema:description ObjectiveMeasurement of liver iron concentration is a key parameter for the management of patients with primary and secondary haemochromatosis. Magnetic resonance imaging (MRI) has already demonstrated high accuracy to quantify liver iron content. To be able to improve the current management of patients that are found to have iron overload, we need a reproducible, standardised method that is, or can easily be made, widely available.MethodsThis article discusses the different MRI techniques and models to quantify liver iron concentration that are currently available and envisaged for the near future from a realistic perspective.ResultsT2 relaxometry methods are more accurate than signal intensity ratio (SIR) methods and they are reproducible but are not yet standardised or widely available. SIR methods, on the other hand, are very specific for all levels of iron overload and, what is more, they are also reproducible, standardised and already widely available.ConclusionsFor these reasons, today, both methods remain necessary while progress is made towards universal standardisation of the relaxometry technique.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N3c3617a61c0646d7b938ea3fdd7cd375
12 Ne9c23dbe6d304d1eb6111266c48328c5
13 sg:journal.1043606
14 schema:keywords MRI techniques
15 MethodsThis article
16 ObjectiveMeasurement
17 SIR method
18 accuracy
19 article
20 concentration
21 content
22 current management
23 different MRI techniques
24 future
25 haemochromatosis
26 hand
27 high accuracy
28 imaging
29 intensity ratio method
30 iron concentration
31 iron content
32 iron overload
33 key parameters
34 levels
35 liver
36 liver iron concentration
37 liver iron content
38 magnetic resonance imaging
39 management
40 management of patients
41 method
42 model
43 near future
44 overload
45 parameters
46 patients
47 perspective
48 progress
49 quantification
50 ratio method
51 realistic perspective
52 reasons
53 relaxometry methods
54 relaxometry technique
55 resonance imaging
56 secondary haemochromatosis
57 signal intensity ratio method
58 standardisation
59 standardised method
60 technique
61 today
62 universal standardisation
63 schema:name Quantification of iron concentration in the liver by MRI
64 schema:pagination 173-180
65 schema:productId N8057ff5d0c5a4aae9f8f1d8d12a744f2
66 N845f2da1374a4f24af1c1642dd383207
67 N98e96ed5ac86420ab8b187bfe11af63f
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040739257
69 https://doi.org/10.1007/s13244-011-0132-1
70 schema:sdDatePublished 2022-10-01T06:36
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N7c455db8348a42a1b8e2ae8021bf39ea
73 schema:url https://doi.org/10.1007/s13244-011-0132-1
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N3c3617a61c0646d7b938ea3fdd7cd375 schema:issueNumber 2
78 rdf:type schema:PublicationIssue
79 N40058e2eb50e4b4b8fd611b3c454ff15 rdf:first N4c3d24ebe345442eb325544d76bd4aef
80 rdf:rest Na8b38bd0623a441a8d59cf74408cadd4
81 N4c3d24ebe345442eb325544d76bd4aef schema:affiliation grid-institutes:None
82 schema:familyName Alústiza Echeverría
83 schema:givenName José María
84 rdf:type schema:Person
85 N7c455db8348a42a1b8e2ae8021bf39ea schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N8057ff5d0c5a4aae9f8f1d8d12a744f2 schema:name doi
88 schema:value 10.1007/s13244-011-0132-1
89 rdf:type schema:PropertyValue
90 N845f2da1374a4f24af1c1642dd383207 schema:name dimensions_id
91 schema:value pub.1040739257
92 rdf:type schema:PropertyValue
93 N98e96ed5ac86420ab8b187bfe11af63f schema:name pubmed_id
94 schema:value 22696043
95 rdf:type schema:PropertyValue
96 Na8b38bd0623a441a8d59cf74408cadd4 rdf:first sg:person.01215646126.94
97 rdf:rest Nfd5ab917c88846eba27e968030f178e9
98 Ne9c23dbe6d304d1eb6111266c48328c5 schema:volumeNumber 3
99 rdf:type schema:PublicationVolume
100 Nfd5ab917c88846eba27e968030f178e9 rdf:first sg:person.012067262567.36
101 rdf:rest rdf:nil
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:journal.1043606 schema:issn 1869-4101
109 schema:name Insights into Imaging
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.012067262567.36 schema:affiliation grid-institutes:None
113 schema:familyName Emparanza
114 schema:givenName José Ignacio
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067262567.36
116 rdf:type schema:Person
117 sg:person.01215646126.94 schema:affiliation grid-institutes:None
118 schema:familyName Castiella
119 schema:givenName Agustín
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215646126.94
121 rdf:type schema:Person
122 sg:pub.10.1007/s00247-007-0567-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052361779
123 https://doi.org/10.1007/s00247-007-0567-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00330-010-1899-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051544141
126 https://doi.org/10.1007/s00330-010-1899-z
127 rdf:type schema:CreativeWork
128 grid-institutes:None schema:alternateName Clinic Epidemiology Unity, Donostia Hospital, San Sebastián, Spain
129 Gastroenterology Unity Mendaro Hospital, Mendaro, Spain
130 Osatek-Donostia Hospital, P. Dr. Beguiristain 109, 20014, San Sebastián, Spain
131 schema:name Clinic Epidemiology Unity, Donostia Hospital, San Sebastián, Spain
132 Gastroenterology Unity Mendaro Hospital, Mendaro, Spain
133 Osatek-Donostia Hospital, P. Dr. Beguiristain 109, 20014, San Sebastián, Spain
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...