Systematic Review and Regression Modeling of the Effects of Age, Body Size, and Exercise on Cardiovascular Parameters in Healthy Adults View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-19

AUTHORS

Aseem Pradhan, John Scaringi, Patrick Gerard, Ross Arena, Jonathan Myers, Leonard A. Kaminsky, Ethan Kung

ABSTRACT

PurposeBlood pressure, cardiac output, and ventricular volumes correlate to various subject features such as age, body size, and exercise intensity. The purpose of this study is to quantify this correlation through regression modeling.MethodsWe conducted a systematic review to compile reference data of healthy subjects for several cardiovascular parameters and subject features. Regression algorithms used these aggregate data to formulate predictive models for the outputs—systolic and diastolic blood pressure, ventricular volumes, cardiac output, and heart rate—against the features—age, height, weight, and exercise intensity. A simulation-based procedure generated data of virtual subjects to test whether these regression models built using aggregate data can perform well for subject-level predictions and to provide an estimate for the expected error. The blood pressure and heart rate models were also validated using real-world subject-level data.ResultsThe direction of trends between model outputs and the input subject features in our study agree with those in current literature.ConclusionAlthough other studies observe exponential predictor-output relations, the linear regression algorithms performed the best for the data in this study. The use of subject-level data and more predictors may provide regression models with higher fidelity.SignificanceModels developed in this study can be useful to clinicians for personalized patient assessment and to researchers for tuning computational models. More... »

PAGES

1-19

References to SciGraph publications

  • 2000-02. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging in EUROPEAN RADIOLOGY
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2014-03-13. Determinants of exercise peak arterial blood pressure, circulatory power, and exercise cardiac power in a population based sample of Finnish male and female aged 30 to 47 years: the Cardiovascular Risk in Young Finns Study in BMC CARDIOVASCULAR DISORDERS
  • 2018-03-06. Patient-Specific Cardiovascular Computational Modeling: Diversity of Personalization and Challenges in JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
  • 2012-01-24. Heart adaptations to long-term aerobic training in paraplegic subjects: an echocardiographic study in SPINAL CORD
  • 2014-11-28. Age-specific changes in left ventricular diastolic function: A velocity-encoded magnetic resonance imaging study in EUROPEAN RADIOLOGY
  • 2010-06-18. Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries in ANNALS OF BIOMEDICAL ENGINEERING
  • 2015-07-04. Haemodynamics of aerobic and resistance blood flow restriction exercise in young and older adults in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 2009-07-17. On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model in ANNALS OF BIOMEDICAL ENGINEERING
  • 2016-08-04. Effect of hydration status on atrial and ventricular volumes and function in healthy adult volunteers in PEDIATRIC RADIOLOGY
  • 2013-11-27. Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 2016-12-27. Quantification of radial arterial pulse characteristics change during exercise and recovery in THE JOURNAL OF PHYSIOLOGICAL SCIENCES
  • 2008-11-07. Cardiac response to exercise in young, normal weight and overweight men and women in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 2013. Applied Predictive Modeling in NONE
  • 2014-08-21. Sex differences in ventricular–vascular coupling following endurance training in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 2018-03-23. Exercise capacity in diabetes mellitus is predicted by activity status and cardiac size rather than cardiac function: a case control study in CARDIOVASCULAR DIABETOLOGY
  • 2020-02-11. A Bayesian predictive approach for dealing with pseudoreplication in SCIENTIFIC REPORTS
  • 2012-07-28. Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13239-021-00582-3

    DOI

    http://dx.doi.org/10.1007/s13239-021-00582-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142011295

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34668143


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, Clemson University, Clemson, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26090.3d", 
              "name": [
                "Department of Mechanical Engineering, Clemson University, Clemson, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pradhan", 
            "givenName": "Aseem", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bioengineering, Clemson University, Clemson, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26090.3d", 
              "name": [
                "Department of Bioengineering, Clemson University, Clemson, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scaringi", 
            "givenName": "John", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26090.3d", 
              "name": [
                "School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerard", 
            "givenName": "Patrick", 
            "id": "sg:person.0644130544.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644130544.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arena", 
            "givenName": "Ross", 
            "id": "sg:person.01145541246.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145541246.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Cardiology, VA Palo Alto Healthcare System, Palo Alto, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.280747.e", 
              "name": [
                "Division of Cardiology, VA Palo Alto Healthcare System, Palo Alto, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Myers", 
            "givenName": "Jonathan", 
            "id": "sg:person.0761333560.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761333560.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fisher Institute of Health and Well-Being and Clinical Exercise Physiology Laboratory, Ball State University, Muncie, IN, USA", 
              "id": "http://www.grid.ac/institutes/grid.252754.3", 
              "name": [
                "Fisher Institute of Health and Well-Being and Clinical Exercise Physiology Laboratory, Ball State University, Muncie, IN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaminsky", 
            "givenName": "Leonard A.", 
            "id": "sg:person.01111160516.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111160516.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bioengineering, Clemson University, Clemson, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26090.3d", 
              "name": [
                "Department of Mechanical Engineering, Clemson University, Clemson, SC, USA", 
                "Department of Bioengineering, Clemson University, Clemson, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kung", 
            "givenName": "Ethan", 
            "id": "sg:person.01005054560.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005054560.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00421-015-3213-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038612856", 
              "https://doi.org/10.1007/s00421-015-3213-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00421-008-0918-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042457060", 
              "https://doi.org/10.1007/s00421-008-0918-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sc.2011.189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039712216", 
              "https://doi.org/10.1038/sc.2011.189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12265-018-9792-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101356950", 
              "https://doi.org/10.1007/s12265-018-9792-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-009-9760-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017764521", 
              "https://doi.org/10.1007/s10439-009-9760-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2016.234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047243766", 
              "https://doi.org/10.1038/ijo.2016.234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-010-0083-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014294817", 
              "https://doi.org/10.1007/s10439-010-0083-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-014-3488-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040586235", 
              "https://doi.org/10.1007/s00330-014-3488-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-6849-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001327449", 
              "https://doi.org/10.1007/978-1-4614-6849-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12576-016-0515-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042091309", 
              "https://doi.org/10.1007/s12576-016-0515-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00421-014-2981-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008754891", 
              "https://doi.org/10.1007/s00421-014-2981-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1532-429x-14-51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046923117", 
              "https://doi.org/10.1186/1532-429x-14-51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2261-14-35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016526690", 
              "https://doi.org/10.1186/1471-2261-14-35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12933-018-0688-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101745133", 
              "https://doi.org/10.1186/s12933-018-0688-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003300050072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002923139", 
              "https://doi.org/10.1007/s003300050072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00421-013-2773-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051604692", 
              "https://doi.org/10.1007/s00421-013-2773-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-59384-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124796987", 
              "https://doi.org/10.1038/s41598-020-59384-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-016-3656-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045849002", 
              "https://doi.org/10.1007/s00247-016-3656-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-19", 
        "datePublishedReg": "2021-10-19", 
        "description": "PurposeBlood pressure, cardiac output, and ventricular volumes correlate to various subject features such as age, body size, and exercise intensity. The purpose of this study is to quantify this correlation through regression modeling.MethodsWe conducted a systematic review to compile reference data of healthy subjects for several cardiovascular parameters and subject features. Regression algorithms used these aggregate data to formulate predictive models for the outputs\u2014systolic and diastolic blood pressure, ventricular volumes, cardiac output, and heart rate\u2014against the features\u2014age, height, weight, and exercise intensity. A simulation-based procedure generated data of virtual subjects to test whether these regression models built using aggregate data can perform well for subject-level predictions and to provide an estimate for the expected error. The blood pressure and heart rate models were also validated using real-world subject-level data.ResultsThe direction of trends between model outputs and the input subject features in our study agree with those in current literature.ConclusionAlthough other studies observe exponential predictor-output relations, the linear regression algorithms performed the best for the data in this study. The use of subject-level data and more predictors may provide regression models with higher fidelity.SignificanceModels developed in this study can be useful to clinicians for personalized patient assessment and to researchers for tuning computational models.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13239-021-00582-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7508215", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043552", 
            "issn": [
              "1869-408X", 
              "1869-4098"
            ], 
            "name": "Cardiovascular Engineering and Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "regression algorithm", 
          "blood pressure", 
          "cardiac output", 
          "cardiovascular parameters", 
          "subject-level data", 
          "ventricular volume", 
          "systematic review", 
          "diastolic blood pressure", 
          "linear regression algorithm", 
          "regression modeling", 
          "subject-level predictions", 
          "effect of age", 
          "regression models", 
          "patient assessment", 
          "healthy subjects", 
          "heart rate", 
          "healthy adults", 
          "virtual subjects", 
          "algorithm", 
          "computational model", 
          "heart rate model", 
          "subject features", 
          "current literature", 
          "predictive model", 
          "subjects", 
          "age", 
          "simulation-based procedure", 
          "high fidelity", 
          "aggregate data", 
          "review", 
          "ConclusionAlthough", 
          "study", 
          "clinicians", 
          "MethodsWe", 
          "more predictors", 
          "reference data", 
          "features", 
          "modeling", 
          "output", 
          "adults", 
          "model", 
          "data", 
          "predictors", 
          "exercise", 
          "pressure", 
          "body size", 
          "model output", 
          "input subject", 
          "volume", 
          "researchers", 
          "error", 
          "assessment", 
          "direction of trends", 
          "weight", 
          "fidelity", 
          "rate", 
          "correlation", 
          "prediction", 
          "procedure", 
          "effect", 
          "use", 
          "purpose", 
          "parameters", 
          "literature", 
          "intensity", 
          "size", 
          "trends", 
          "direction", 
          "height", 
          "relation", 
          "rate model", 
          "estimates"
        ], 
        "name": "Systematic Review and Regression Modeling of the Effects of Age, Body Size, and Exercise on Cardiovascular Parameters in Healthy Adults", 
        "pagination": "1-19", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142011295"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13239-021-00582-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34668143"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13239-021-00582-3", 
          "https://app.dimensions.ai/details/publication/pub.1142011295"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_883.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13239-021-00582-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13239-021-00582-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13239-021-00582-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13239-021-00582-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13239-021-00582-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      22 PREDICATES      116 URIs      88 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13239-021-00582-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:11
    4 anzsrc-for:1102
    5 schema:author N02e04986a748480fba02f6cbb5b8280e
    6 schema:citation sg:pub.10.1007/978-1-4614-6849-3
    7 sg:pub.10.1007/s00247-016-3656-1
    8 sg:pub.10.1007/s00330-014-3488-z
    9 sg:pub.10.1007/s003300050072
    10 sg:pub.10.1007/s00421-008-0918-0
    11 sg:pub.10.1007/s00421-013-2773-x
    12 sg:pub.10.1007/s00421-014-2981-z
    13 sg:pub.10.1007/s00421-015-3213-x
    14 sg:pub.10.1007/s10439-009-9760-8
    15 sg:pub.10.1007/s10439-010-0083-6
    16 sg:pub.10.1007/s12265-018-9792-2
    17 sg:pub.10.1007/s12576-016-0515-7
    18 sg:pub.10.1038/ijo.2016.234
    19 sg:pub.10.1038/s41598-020-59384-7
    20 sg:pub.10.1038/sc.2011.189
    21 sg:pub.10.1186/1471-2261-14-35
    22 sg:pub.10.1186/1532-429x-14-51
    23 sg:pub.10.1186/s12933-018-0688-x
    24 schema:datePublished 2021-10-19
    25 schema:datePublishedReg 2021-10-19
    26 schema:description PurposeBlood pressure, cardiac output, and ventricular volumes correlate to various subject features such as age, body size, and exercise intensity. The purpose of this study is to quantify this correlation through regression modeling.MethodsWe conducted a systematic review to compile reference data of healthy subjects for several cardiovascular parameters and subject features. Regression algorithms used these aggregate data to formulate predictive models for the outputs—systolic and diastolic blood pressure, ventricular volumes, cardiac output, and heart rate—against the features—age, height, weight, and exercise intensity. A simulation-based procedure generated data of virtual subjects to test whether these regression models built using aggregate data can perform well for subject-level predictions and to provide an estimate for the expected error. The blood pressure and heart rate models were also validated using real-world subject-level data.ResultsThe direction of trends between model outputs and the input subject features in our study agree with those in current literature.ConclusionAlthough other studies observe exponential predictor-output relations, the linear regression algorithms performed the best for the data in this study. The use of subject-level data and more predictors may provide regression models with higher fidelity.SignificanceModels developed in this study can be useful to clinicians for personalized patient assessment and to researchers for tuning computational models.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf sg:journal.1043552
    31 schema:keywords ConclusionAlthough
    32 MethodsWe
    33 adults
    34 age
    35 aggregate data
    36 algorithm
    37 assessment
    38 blood pressure
    39 body size
    40 cardiac output
    41 cardiovascular parameters
    42 clinicians
    43 computational model
    44 correlation
    45 current literature
    46 data
    47 diastolic blood pressure
    48 direction
    49 direction of trends
    50 effect
    51 effect of age
    52 error
    53 estimates
    54 exercise
    55 features
    56 fidelity
    57 healthy adults
    58 healthy subjects
    59 heart rate
    60 heart rate model
    61 height
    62 high fidelity
    63 input subject
    64 intensity
    65 linear regression algorithm
    66 literature
    67 model
    68 model output
    69 modeling
    70 more predictors
    71 output
    72 parameters
    73 patient assessment
    74 prediction
    75 predictive model
    76 predictors
    77 pressure
    78 procedure
    79 purpose
    80 rate
    81 rate model
    82 reference data
    83 regression algorithm
    84 regression modeling
    85 regression models
    86 relation
    87 researchers
    88 review
    89 simulation-based procedure
    90 size
    91 study
    92 subject features
    93 subject-level data
    94 subject-level predictions
    95 subjects
    96 systematic review
    97 trends
    98 use
    99 ventricular volume
    100 virtual subjects
    101 volume
    102 weight
    103 schema:name Systematic Review and Regression Modeling of the Effects of Age, Body Size, and Exercise on Cardiovascular Parameters in Healthy Adults
    104 schema:pagination 1-19
    105 schema:productId N2d7db9bad7344327ab1de7e9f4e98e11
    106 N5f1b8016ecb241b582b96e6bc0d784e3
    107 Nb2f30d96d005485a8ac026188b971a68
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142011295
    109 https://doi.org/10.1007/s13239-021-00582-3
    110 schema:sdDatePublished 2022-05-20T07:38
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher Nb2e9099b4e004c418a4da3003f6607a7
    113 schema:url https://doi.org/10.1007/s13239-021-00582-3
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N02e04986a748480fba02f6cbb5b8280e rdf:first N1526fcc11d654a3bb5215cfd5dd5d31f
    118 rdf:rest N9b83cb5f6ec6479ea5862515173b3b3d
    119 N1526fcc11d654a3bb5215cfd5dd5d31f schema:affiliation grid-institutes:grid.26090.3d
    120 schema:familyName Pradhan
    121 schema:givenName Aseem
    122 rdf:type schema:Person
    123 N222db8255b8b4c2f84eeb6b0a5e4c785 rdf:first sg:person.01145541246.22
    124 rdf:rest N4b9523e16a0b487a99b32e230a27a8e8
    125 N2d7db9bad7344327ab1de7e9f4e98e11 schema:name pubmed_id
    126 schema:value 34668143
    127 rdf:type schema:PropertyValue
    128 N4b9523e16a0b487a99b32e230a27a8e8 rdf:first sg:person.0761333560.97
    129 rdf:rest Ncd0aa0961b8046c48c67fab1de336ee3
    130 N5f1b8016ecb241b582b96e6bc0d784e3 schema:name doi
    131 schema:value 10.1007/s13239-021-00582-3
    132 rdf:type schema:PropertyValue
    133 N803011ddf10f435083930f56195de7eb rdf:first sg:person.01005054560.01
    134 rdf:rest rdf:nil
    135 N9631e209569c496cb7aabfc941886692 schema:affiliation grid-institutes:grid.26090.3d
    136 schema:familyName Scaringi
    137 schema:givenName John
    138 rdf:type schema:Person
    139 N9b83cb5f6ec6479ea5862515173b3b3d rdf:first N9631e209569c496cb7aabfc941886692
    140 rdf:rest Nea77c3fb6a7a47f09385e084dd51dbea
    141 Nb2e9099b4e004c418a4da3003f6607a7 schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 Nb2f30d96d005485a8ac026188b971a68 schema:name dimensions_id
    144 schema:value pub.1142011295
    145 rdf:type schema:PropertyValue
    146 Ncd0aa0961b8046c48c67fab1de336ee3 rdf:first sg:person.01111160516.82
    147 rdf:rest N803011ddf10f435083930f56195de7eb
    148 Nea77c3fb6a7a47f09385e084dd51dbea rdf:first sg:person.0644130544.49
    149 rdf:rest N222db8255b8b4c2f84eeb6b0a5e4c785
    150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Information and Computing Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Artificial Intelligence and Image Processing
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Medical and Health Sciences
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Cardiorespiratory Medicine and Haematology
    161 rdf:type schema:DefinedTerm
    162 sg:grant.7508215 http://pending.schema.org/fundedItem sg:pub.10.1007/s13239-021-00582-3
    163 rdf:type schema:MonetaryGrant
    164 sg:journal.1043552 schema:issn 1869-408X
    165 1869-4098
    166 schema:name Cardiovascular Engineering and Technology
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.01005054560.01 schema:affiliation grid-institutes:grid.26090.3d
    170 schema:familyName Kung
    171 schema:givenName Ethan
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005054560.01
    173 rdf:type schema:Person
    174 sg:person.01111160516.82 schema:affiliation grid-institutes:grid.252754.3
    175 schema:familyName Kaminsky
    176 schema:givenName Leonard A.
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111160516.82
    178 rdf:type schema:Person
    179 sg:person.01145541246.22 schema:affiliation grid-institutes:grid.185648.6
    180 schema:familyName Arena
    181 schema:givenName Ross
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145541246.22
    183 rdf:type schema:Person
    184 sg:person.0644130544.49 schema:affiliation grid-institutes:grid.26090.3d
    185 schema:familyName Gerard
    186 schema:givenName Patrick
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644130544.49
    188 rdf:type schema:Person
    189 sg:person.0761333560.97 schema:affiliation grid-institutes:grid.280747.e
    190 schema:familyName Myers
    191 schema:givenName Jonathan
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761333560.97
    193 rdf:type schema:Person
    194 sg:pub.10.1007/978-1-4614-6849-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001327449
    195 https://doi.org/10.1007/978-1-4614-6849-3
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00247-016-3656-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045849002
    198 https://doi.org/10.1007/s00247-016-3656-1
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00330-014-3488-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040586235
    201 https://doi.org/10.1007/s00330-014-3488-z
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s003300050072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002923139
    204 https://doi.org/10.1007/s003300050072
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00421-008-0918-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042457060
    207 https://doi.org/10.1007/s00421-008-0918-0
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00421-013-2773-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051604692
    210 https://doi.org/10.1007/s00421-013-2773-x
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s00421-014-2981-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008754891
    213 https://doi.org/10.1007/s00421-014-2981-z
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s00421-015-3213-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038612856
    216 https://doi.org/10.1007/s00421-015-3213-x
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s10439-009-9760-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017764521
    219 https://doi.org/10.1007/s10439-009-9760-8
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s10439-010-0083-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014294817
    222 https://doi.org/10.1007/s10439-010-0083-6
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s12265-018-9792-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101356950
    225 https://doi.org/10.1007/s12265-018-9792-2
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s12576-016-0515-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042091309
    228 https://doi.org/10.1007/s12576-016-0515-7
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/ijo.2016.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047243766
    231 https://doi.org/10.1038/ijo.2016.234
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/s41598-020-59384-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124796987
    234 https://doi.org/10.1038/s41598-020-59384-7
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/sc.2011.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039712216
    237 https://doi.org/10.1038/sc.2011.189
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/1471-2261-14-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016526690
    240 https://doi.org/10.1186/1471-2261-14-35
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1532-429x-14-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046923117
    243 https://doi.org/10.1186/1532-429x-14-51
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/s12933-018-0688-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101745133
    246 https://doi.org/10.1186/s12933-018-0688-x
    247 rdf:type schema:CreativeWork
    248 grid-institutes:grid.185648.6 schema:alternateName Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL, USA
    249 schema:name Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL, USA
    250 rdf:type schema:Organization
    251 grid-institutes:grid.252754.3 schema:alternateName Fisher Institute of Health and Well-Being and Clinical Exercise Physiology Laboratory, Ball State University, Muncie, IN, USA
    252 schema:name Fisher Institute of Health and Well-Being and Clinical Exercise Physiology Laboratory, Ball State University, Muncie, IN, USA
    253 rdf:type schema:Organization
    254 grid-institutes:grid.26090.3d schema:alternateName Department of Bioengineering, Clemson University, Clemson, SC, USA
    255 Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
    256 School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
    257 schema:name Department of Bioengineering, Clemson University, Clemson, SC, USA
    258 Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
    259 School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
    260 rdf:type schema:Organization
    261 grid-institutes:grid.280747.e schema:alternateName Division of Cardiology, VA Palo Alto Healthcare System, Palo Alto, CA, USA
    262 schema:name Division of Cardiology, VA Palo Alto Healthcare System, Palo Alto, CA, USA
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...