Transforming Monitoring Structures with Resilient Encoders—Application to Repeated Games View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03

AUTHORS

Maël Le Treust, Samson Lasaulce

ABSTRACT

An important feature of a dynamic game is its monitoring structure namely, what the players effectively see from the played actions. We consider games with arbitrary monitoring structures. One of the purposes of this paper is to know to what extent an encoder, who perfectly observes the played actions and sends a complementary public signal to the players, can establish perfect monitoring for all the players. To reach this goal, the main technical problem to be solved at the encoder is to design a source encoder which compresses the action profile in the most concise manner possible. A special feature of this encoder is that the multi-dimensional signal (namely, the action profiles) to be encoded is assumed to comprise a component whose probability distribution is not known to the encoder and the decoder has a side information (the private signals received by the players when the encoder is off). This new framework appears to be both of game-theoretical and information-theoretical interest. In particular, it is useful for designing certain types of encoders that are resilient to single deviations and provide an equilibrium utility region in the proposed setting; it provides a new type of constraints to compress an information source (i.e., a random variable). Regarding the first aspect, we apply the derived result to the repeated prisoner’s dilemma. More... »

PAGES

38-67

References to SciGraph publications

  • 2003. Information-Spectrum Methods in Information Theory in NONE
  • 1991-12. Internal correlation in repeated games in INTERNATIONAL JOURNAL OF GAME THEORY
  • 2011-06. General Properties of Long-Run Supergames in DYNAMIC GAMES AND APPLICATIONS
  • 1976. Graph Theory with Applications in NONE
  • 2013-11. Correlation through bounded recall strategies in INTERNATIONAL JOURNAL OF GAME THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13235-012-0058-3

    DOI

    http://dx.doi.org/10.1007/s13235-012-0058-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038376831


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economic Theory", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire d'Informatique Gaspard-Monge", 
              "id": "https://www.grid.ac/institutes/grid.462940.d", 
              "name": [
                "Universit\u00e9 Paris-Est Marne-la-Vall\u00e9e, Institut d\u2019\u00e9lectronique et d\u2019informatique Gaspard-Monge, Marne-la-Vall\u00e9e, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Treust", 
            "givenName": "Ma\u00ebl", 
            "id": "sg:person.012616425651.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616425651.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Laboratoire des Signaux et Syst\u00e8mes, CNRS, Universit\u00e9 Paris Sud XI, Sup\u00e9lec, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lasaulce", 
            "givenName": "Samson", 
            "id": "sg:person.07635273047.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07635273047.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01766432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002168528", 
              "https://doi.org/10.1007/bf01766432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01766432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002168528", 
              "https://doi.org/10.1007/bf01766432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1468-0262.2006.00720.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004906637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13235-011-0018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006043328", 
              "https://doi.org/10.1007/s13235-011-0018-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12066-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006470334", 
              "https://doi.org/10.1007/978-3-662-12066-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12066-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006470334", 
              "https://doi.org/10.1007/978-3-662-12066-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1468-0262.2006.00717.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021314215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00182-012-0334-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037863439", 
              "https://doi.org/10.1007/s00182-012-0334-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1389-1286(01)00302-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048798332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0531(88)90153-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048995795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052867467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1956.1056798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061645502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1973.1055037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1976.1055607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1981.1056302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061648495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2010.072610.091472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061827392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/moor.1060.0248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064722907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2951505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070145842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetecs.2001.945038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093233487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/glocom.2000.892010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093543465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511921889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098776130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109703686", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-349-03521-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109703686", 
              "https://doi.org/10.1007/978-1-349-03521-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-349-03521-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109703686", 
              "https://doi.org/10.1007/978-1-349-03521-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-03", 
        "datePublishedReg": "2013-03-01", 
        "description": "An important feature of a dynamic game is its monitoring structure namely, what the players effectively see from the played actions. We consider games with arbitrary monitoring structures. One of the purposes of this paper is to know to what extent an encoder, who perfectly observes the played actions and sends a complementary public signal to the players, can establish perfect monitoring for all the players. To reach this goal, the main technical problem to be solved at the encoder is to design a source encoder which compresses the action profile in the most concise manner possible. A special feature of this encoder is that the multi-dimensional signal (namely, the action profiles) to be encoded is assumed to comprise a component whose probability distribution is not known to the encoder and the decoder has a side information (the private signals received by the players when the encoder is off). This new framework appears to be both of game-theoretical and information-theoretical interest. In particular, it is useful for designing certain types of encoders that are resilient to single deviations and provide an equilibrium utility region in the proposed setting; it provides a new type of constraints to compress an information source (i.e., a random variable). Regarding the first aspect, we apply the derived result to the repeated prisoner\u2019s dilemma.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13235-012-0058-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053341", 
            "issn": [
              "2153-0785", 
              "2153-0793"
            ], 
            "name": "Dynamic Games and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Transforming Monitoring Structures with Resilient Encoders\u2014Application to Repeated Games", 
        "pagination": "38-67", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b6cfdfda3d6492f8313e090e8e2a7e6973fb5230f42d9fe3123338b0e2824e1e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13235-012-0058-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038376831"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13235-012-0058-3", 
          "https://app.dimensions.ai/details/publication/pub.1038376831"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000591.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs13235-012-0058-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13235-012-0058-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13235-012-0058-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13235-012-0058-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13235-012-0058-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    138 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13235-012-0058-3 schema:about anzsrc-for:14
    2 anzsrc-for:1401
    3 schema:author Nad910a6967be404ea526eae5c4f880df
    4 schema:citation sg:pub.10.1007/978-1-349-03521-2
    5 sg:pub.10.1007/978-3-662-12066-8
    6 sg:pub.10.1007/bf01766432
    7 sg:pub.10.1007/s00182-012-0334-x
    8 sg:pub.10.1007/s13235-011-0018-3
    9 https://app.dimensions.ai/details/publication/pub.1109703686
    10 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    11 https://doi.org/10.1016/0022-0531(88)90153-6
    12 https://doi.org/10.1016/s1389-1286(01)00302-4
    13 https://doi.org/10.1017/cbo9780511921889
    14 https://doi.org/10.1109/glocom.2000.892010
    15 https://doi.org/10.1109/tit.1956.1056798
    16 https://doi.org/10.1109/tit.1973.1055037
    17 https://doi.org/10.1109/tit.1976.1055607
    18 https://doi.org/10.1109/tit.1981.1056302
    19 https://doi.org/10.1109/twc.2010.072610.091472
    20 https://doi.org/10.1109/vetecs.2001.945038
    21 https://doi.org/10.1111/j.1468-0262.2006.00717.x
    22 https://doi.org/10.1111/j.1468-0262.2006.00720.x
    23 https://doi.org/10.1287/moor.1060.0248
    24 https://doi.org/10.2307/2951505
    25 schema:datePublished 2013-03
    26 schema:datePublishedReg 2013-03-01
    27 schema:description An important feature of a dynamic game is its monitoring structure namely, what the players effectively see from the played actions. We consider games with arbitrary monitoring structures. One of the purposes of this paper is to know to what extent an encoder, who perfectly observes the played actions and sends a complementary public signal to the players, can establish perfect monitoring for all the players. To reach this goal, the main technical problem to be solved at the encoder is to design a source encoder which compresses the action profile in the most concise manner possible. A special feature of this encoder is that the multi-dimensional signal (namely, the action profiles) to be encoded is assumed to comprise a component whose probability distribution is not known to the encoder and the decoder has a side information (the private signals received by the players when the encoder is off). This new framework appears to be both of game-theoretical and information-theoretical interest. In particular, it is useful for designing certain types of encoders that are resilient to single deviations and provide an equilibrium utility region in the proposed setting; it provides a new type of constraints to compress an information source (i.e., a random variable). Regarding the first aspect, we apply the derived result to the repeated prisoner’s dilemma.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N2ce4d67c4d034196a0deeb310ae8c54a
    32 Naf53c7ebde5844c7bdfed24ad689ba24
    33 sg:journal.1053341
    34 schema:name Transforming Monitoring Structures with Resilient Encoders—Application to Repeated Games
    35 schema:pagination 38-67
    36 schema:productId N095b07c15f7d492aa5da65b93827dedd
    37 N49ca14ff4c0c4707a1c91a5b04ace9ad
    38 N5c8980ac280b43fea34862d445e260be
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038376831
    40 https://doi.org/10.1007/s13235-012-0058-3
    41 schema:sdDatePublished 2019-04-10T16:03
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Na13fab2eb5814305b93329350cecbb56
    44 schema:url http://link.springer.com/10.1007%2Fs13235-012-0058-3
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N095b07c15f7d492aa5da65b93827dedd schema:name dimensions_id
    49 schema:value pub.1038376831
    50 rdf:type schema:PropertyValue
    51 N2ce4d67c4d034196a0deeb310ae8c54a schema:volumeNumber 3
    52 rdf:type schema:PublicationVolume
    53 N49ca14ff4c0c4707a1c91a5b04ace9ad schema:name doi
    54 schema:value 10.1007/s13235-012-0058-3
    55 rdf:type schema:PropertyValue
    56 N5c8980ac280b43fea34862d445e260be schema:name readcube_id
    57 schema:value b6cfdfda3d6492f8313e090e8e2a7e6973fb5230f42d9fe3123338b0e2824e1e
    58 rdf:type schema:PropertyValue
    59 N760b44f3521d4decb99d435727f96134 rdf:first sg:person.07635273047.49
    60 rdf:rest rdf:nil
    61 Na13fab2eb5814305b93329350cecbb56 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Nad910a6967be404ea526eae5c4f880df rdf:first sg:person.012616425651.10
    64 rdf:rest N760b44f3521d4decb99d435727f96134
    65 Naf53c7ebde5844c7bdfed24ad689ba24 schema:issueNumber 1
    66 rdf:type schema:PublicationIssue
    67 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Economics
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:1401 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Economic Theory
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1053341 schema:issn 2153-0785
    74 2153-0793
    75 schema:name Dynamic Games and Applications
    76 rdf:type schema:Periodical
    77 sg:person.012616425651.10 schema:affiliation https://www.grid.ac/institutes/grid.462940.d
    78 schema:familyName Le Treust
    79 schema:givenName Maël
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616425651.10
    81 rdf:type schema:Person
    82 sg:person.07635273047.49 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    83 schema:familyName Lasaulce
    84 schema:givenName Samson
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07635273047.49
    86 rdf:type schema:Person
    87 sg:pub.10.1007/978-1-349-03521-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109703686
    88 https://doi.org/10.1007/978-1-349-03521-2
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/978-3-662-12066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006470334
    91 https://doi.org/10.1007/978-3-662-12066-8
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf01766432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168528
    94 https://doi.org/10.1007/bf01766432
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s00182-012-0334-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037863439
    97 https://doi.org/10.1007/s00182-012-0334-x
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s13235-011-0018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006043328
    100 https://doi.org/10.1007/s13235-011-0018-3
    101 rdf:type schema:CreativeWork
    102 https://app.dimensions.ai/details/publication/pub.1109703686 schema:CreativeWork
    103 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0022-0531(88)90153-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048995795
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s1389-1286(01)00302-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048798332
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1017/cbo9780511921889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098776130
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/glocom.2000.892010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093543465
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/tit.1956.1056798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645502
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/tit.1973.1055037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647311
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/tit.1976.1055607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647834
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/tit.1981.1056302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648495
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/twc.2010.072610.091472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061827392
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/vetecs.2001.945038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093233487
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1111/j.1468-0262.2006.00717.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021314215
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1111/j.1468-0262.2006.00720.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004906637
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1287/moor.1060.0248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722907
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.2307/2951505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070145842
    132 rdf:type schema:CreativeWork
    133 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    134 schema:name Laboratoire des Signaux et Systèmes, CNRS, Université Paris Sud XI, Supélec, Paris, France
    135 rdf:type schema:Organization
    136 https://www.grid.ac/institutes/grid.462940.d schema:alternateName Laboratoire d'Informatique Gaspard-Monge
    137 schema:name Université Paris-Est Marne-la-Vallée, Institut d’électronique et d’informatique Gaspard-Monge, Marne-la-Vallée, France
    138 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...