Ontology type: schema:ScholarlyArticle
2016-01-23
AUTHORSBirte Glimm, Heiner Stuckenschmidt
ABSTRACTIt has been 15 years since the first publications proposed the use of ontologies as a basis for defining information semantics on the Web starting what today is known as the Semantic Web Research Community. This work undoubtedly had a significant influence on AI as a field and in particular the knowledge representation and Reasoning Community that quickly identified new challenges and opportunities in using Description Logics in a practical setting. In this survey article, we will try to give an overview of the developments the field has gone through in these 15 years. We will look at three different aspects: the evolution of Semantic Web Language Standards, the evolution of central topics in the Semantic Web Community and the evolution of the research methodology. More... »
PAGES117-130
http://scigraph.springernature.com/pub.10.1007/s13218-016-0424-1
DOIhttp://dx.doi.org/10.1007/s13218-016-0424-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027686929
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Artificial Intelligence, University of Ulm, 89081, Ulm, Germany",
"id": "http://www.grid.ac/institutes/grid.6582.9",
"name": [
"Institute of Artificial Intelligence, University of Ulm, 89081, Ulm, Germany"
],
"type": "Organization"
},
"familyName": "Glimm",
"givenName": "Birte",
"id": "sg:person.015234565343.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Chair of Artificial Intelligence, University of Mannheim, 68161, Mannheim, Germany",
"id": "http://www.grid.ac/institutes/grid.5601.2",
"name": [
"Chair of Artificial Intelligence, University of Mannheim, 68161, Mannheim, Germany"
],
"type": "Organization"
},
"familyName": "Stuckenschmidt",
"givenName": "Heiner",
"id": "sg:person.010226751201.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226751201.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/scientificamerican0501-34",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056527616",
"https://doi.org/10.1038/scientificamerican0501-34"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-41335-3_37",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032203858",
"https://doi.org/10.1007/978-3-642-41335-3_37"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10817-007-9078-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022211146",
"https://doi.org/10.1007/s10817-007-9078-x"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-01-23",
"datePublishedReg": "2016-01-23",
"description": "Abstract\nIt has been 15\u00a0years since the first publications proposed the use of ontologies as a basis for defining information semantics on the Web starting what today is known as the Semantic Web Research Community. This work undoubtedly had a significant influence on AI as a field and in particular the knowledge representation and Reasoning Community that quickly identified new challenges and opportunities in using Description Logics in a practical setting. In this survey article, we will try to give an overview of the developments the field has gone through in these 15\u00a0years. We will look at three different aspects: the evolution of Semantic Web Language Standards, the evolution of central topics in the Semantic Web Community and the evolution of the research methodology.",
"genre": "article",
"id": "sg:pub.10.1007/s13218-016-0424-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136548",
"issn": [
"0933-1875",
"1610-1987"
],
"name": "KI - K\u00fcnstliche Intelligenz",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "30"
}
],
"keywords": [
"Semantic Web research community",
"use of ontologies",
"Semantic Web community",
"Semantic Web",
"Web community",
"information semantics",
"knowledge representation",
"reasoning community",
"description logics",
"language standards",
"research community",
"practical settings",
"new challenges",
"survey article",
"Web",
"semantics",
"ontology",
"AI",
"different aspects",
"logic",
"research methodology",
"representation",
"central topic",
"challenges",
"methodology",
"today",
"topic",
"community",
"work",
"field",
"standards",
"overview",
"aspects",
"opportunities",
"evolution",
"use",
"development",
"setting",
"article",
"publications",
"basis",
"first publication",
"survey",
"years",
"incomplete surveys",
"significant influence",
"influence"
],
"name": "15 Years of Semantic Web: An Incomplete Survey",
"pagination": "117-130",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027686929"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13218-016-0424-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13218-016-0424-1",
"https://app.dimensions.ai/details/publication/pub.1027686929"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_696.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13218-016-0424-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13218-016-0424-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13218-016-0424-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13218-016-0424-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13218-016-0424-1'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
22 PREDICATES
74 URIs
63 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s13218-016-0424-1 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | N697808f473814766b3897a6d3faa1fd2 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-642-41335-3_37 |
5 | ″ | ″ | sg:pub.10.1007/s10817-007-9078-x |
6 | ″ | ″ | sg:pub.10.1038/scientificamerican0501-34 |
7 | ″ | schema:datePublished | 2016-01-23 |
8 | ″ | schema:datePublishedReg | 2016-01-23 |
9 | ″ | schema:description | Abstract It has been 15 years since the first publications proposed the use of ontologies as a basis for defining information semantics on the Web starting what today is known as the Semantic Web Research Community. This work undoubtedly had a significant influence on AI as a field and in particular the knowledge representation and Reasoning Community that quickly identified new challenges and opportunities in using Description Logics in a practical setting. In this survey article, we will try to give an overview of the developments the field has gone through in these 15 years. We will look at three different aspects: the evolution of Semantic Web Language Standards, the evolution of central topics in the Semantic Web Community and the evolution of the research methodology. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N079bb99e96e84e48bc7d213473be2db4 |
14 | ″ | ″ | Nb37db019a8fa4a11841085f7bddf96f6 |
15 | ″ | ″ | sg:journal.1136548 |
16 | ″ | schema:keywords | AI |
17 | ″ | ″ | Semantic Web |
18 | ″ | ″ | Semantic Web community |
19 | ″ | ″ | Semantic Web research community |
20 | ″ | ″ | Web |
21 | ″ | ″ | Web community |
22 | ″ | ″ | article |
23 | ″ | ″ | aspects |
24 | ″ | ″ | basis |
25 | ″ | ″ | central topic |
26 | ″ | ″ | challenges |
27 | ″ | ″ | community |
28 | ″ | ″ | description logics |
29 | ″ | ″ | development |
30 | ″ | ″ | different aspects |
31 | ″ | ″ | evolution |
32 | ″ | ″ | field |
33 | ″ | ″ | first publication |
34 | ″ | ″ | incomplete surveys |
35 | ″ | ″ | influence |
36 | ″ | ″ | information semantics |
37 | ″ | ″ | knowledge representation |
38 | ″ | ″ | language standards |
39 | ″ | ″ | logic |
40 | ″ | ″ | methodology |
41 | ″ | ″ | new challenges |
42 | ″ | ″ | ontology |
43 | ″ | ″ | opportunities |
44 | ″ | ″ | overview |
45 | ″ | ″ | practical settings |
46 | ″ | ″ | publications |
47 | ″ | ″ | reasoning community |
48 | ″ | ″ | representation |
49 | ″ | ″ | research community |
50 | ″ | ″ | research methodology |
51 | ″ | ″ | semantics |
52 | ″ | ″ | setting |
53 | ″ | ″ | significant influence |
54 | ″ | ″ | standards |
55 | ″ | ″ | survey |
56 | ″ | ″ | survey article |
57 | ″ | ″ | today |
58 | ″ | ″ | topic |
59 | ″ | ″ | use |
60 | ″ | ″ | use of ontologies |
61 | ″ | ″ | work |
62 | ″ | ″ | years |
63 | ″ | schema:name | 15 Years of Semantic Web: An Incomplete Survey |
64 | ″ | schema:pagination | 117-130 |
65 | ″ | schema:productId | Na8aafbf704474031a343ba55a947271d |
66 | ″ | ″ | Nfa982e7bc2cf45be9b7c796d83b46f56 |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027686929 |
68 | ″ | ″ | https://doi.org/10.1007/s13218-016-0424-1 |
69 | ″ | schema:sdDatePublished | 2022-06-01T22:16 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N837268e6578441b8a6b558ffa3fe47c1 |
72 | ″ | schema:url | https://doi.org/10.1007/s13218-016-0424-1 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | articles |
75 | ″ | rdf:type | schema:ScholarlyArticle |
76 | N079bb99e96e84e48bc7d213473be2db4 | schema:issueNumber | 2 |
77 | ″ | rdf:type | schema:PublicationIssue |
78 | N697808f473814766b3897a6d3faa1fd2 | rdf:first | sg:person.015234565343.35 |
79 | ″ | rdf:rest | Ne86916f241054648a9f0908af4b8fed2 |
80 | N837268e6578441b8a6b558ffa3fe47c1 | schema:name | Springer Nature - SN SciGraph project |
81 | ″ | rdf:type | schema:Organization |
82 | Na8aafbf704474031a343ba55a947271d | schema:name | doi |
83 | ″ | schema:value | 10.1007/s13218-016-0424-1 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | Nb37db019a8fa4a11841085f7bddf96f6 | schema:volumeNumber | 30 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | Ne86916f241054648a9f0908af4b8fed2 | rdf:first | sg:person.010226751201.33 |
88 | ″ | rdf:rest | rdf:nil |
89 | Nfa982e7bc2cf45be9b7c796d83b46f56 | schema:name | dimensions_id |
90 | ″ | schema:value | pub.1027686929 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Information and Computing Sciences |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Information Systems |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | sg:journal.1136548 | schema:issn | 0933-1875 |
99 | ″ | ″ | 1610-1987 |
100 | ″ | schema:name | KI - Künstliche Intelligenz |
101 | ″ | schema:publisher | Springer Nature |
102 | ″ | rdf:type | schema:Periodical |
103 | sg:person.010226751201.33 | schema:affiliation | grid-institutes:grid.5601.2 |
104 | ″ | schema:familyName | Stuckenschmidt |
105 | ″ | schema:givenName | Heiner |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226751201.33 |
107 | ″ | rdf:type | schema:Person |
108 | sg:person.015234565343.35 | schema:affiliation | grid-institutes:grid.6582.9 |
109 | ″ | schema:familyName | Glimm |
110 | ″ | schema:givenName | Birte |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35 |
112 | ″ | rdf:type | schema:Person |
113 | sg:pub.10.1007/978-3-642-41335-3_37 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032203858 |
114 | ″ | ″ | https://doi.org/10.1007/978-3-642-41335-3_37 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | sg:pub.10.1007/s10817-007-9078-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022211146 |
117 | ″ | ″ | https://doi.org/10.1007/s10817-007-9078-x |
118 | ″ | rdf:type | schema:CreativeWork |
119 | sg:pub.10.1038/scientificamerican0501-34 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1056527616 |
120 | ″ | ″ | https://doi.org/10.1038/scientificamerican0501-34 |
121 | ″ | rdf:type | schema:CreativeWork |
122 | grid-institutes:grid.5601.2 | schema:alternateName | Chair of Artificial Intelligence, University of Mannheim, 68161, Mannheim, Germany |
123 | ″ | schema:name | Chair of Artificial Intelligence, University of Mannheim, 68161, Mannheim, Germany |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.6582.9 | schema:alternateName | Institute of Artificial Intelligence, University of Ulm, 89081, Ulm, Germany |
126 | ″ | schema:name | Institute of Artificial Intelligence, University of Ulm, 89081, Ulm, Germany |
127 | ″ | rdf:type | schema:Organization |