Ontology type: schema:ScholarlyArticle
2013-01-17
AUTHORSChinnappan Cinnadurai, Ganesan Gopalaswamy, Dananjeyan Balachandar
ABSTRACTMonitoring the biological processes and microbial diversity is essential for sustaining the soil health for long-term productivity. In the present study, the impact of long-term nutrient management systems on changes in Azotobacter diversity of Indian semi-arid alfisol was assessed. Three soils, i.e., unfertilized control, soils amended with organic manures (OM), and with inorganic chemical fertilizers (IC) from century-old experimental fields were evaluated for Azotobacter diversity by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Bray–Curtis’s similarity index of the ARDRA data of the isolates was analyzed by non-metric multi-dimensional scaling and hierarchical cluster analysis. The results revealed that the long-term organically managed soil recorded significantly higher soil organic carbon, microbial biomass carbon, and total culturable bacterial counts, whereas the chemical fertilized and control soils remained unaffected. Though the Azotobacter population was significantly higher in OM soil than IC and control soils, the genetic diversity was unaffected due to long-term addition of either organic manures or inorganic chemical fertilizers. This result implies the importance of continuous addition of organic manures and also the optimal use of inorganic chemical fertilizers without disturbing the biological properties of the soil. More... »
PAGES1397-1404
http://scigraph.springernature.com/pub.10.1007/s13213-013-0600-6
DOIhttp://dx.doi.org/10.1007/s13213-013-0600-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026998973
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India",
"id": "http://www.grid.ac/institutes/grid.412906.8",
"name": [
"Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Cinnadurai",
"givenName": "Chinnappan",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India",
"id": "http://www.grid.ac/institutes/grid.412906.8",
"name": [
"Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Gopalaswamy",
"givenName": "Ganesan",
"id": "sg:person.01143753642.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143753642.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India",
"id": "http://www.grid.ac/institutes/grid.412906.8",
"name": [
"Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Balachandar",
"givenName": "Dananjeyan",
"id": "sg:person.0674514564.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674514564.36"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02289565",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044215102",
"https://doi.org/10.1007/bf02289565"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003740100413",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037903223",
"https://doi.org/10.1007/s003740100413"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00203-009-0508-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004546670",
"https://doi.org/10.1007/s00203-009-0508-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00647664",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023567778",
"https://doi.org/10.1007/bf00647664"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00374-008-0306-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019290027",
"https://doi.org/10.1007/s00374-008-0306-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11274-008-9713-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011111241",
"https://doi.org/10.1007/s11274-008-9713-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00336275",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086059298",
"https://doi.org/10.1007/bf00336275"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-01-17",
"datePublishedReg": "2013-01-17",
"description": "Monitoring the biological processes and microbial diversity is essential for sustaining the soil health for long-term productivity. In the present study, the impact of long-term nutrient management systems on changes in Azotobacter diversity of Indian semi-arid alfisol was assessed. Three soils, i.e., unfertilized control, soils amended with organic manures (OM), and with inorganic chemical fertilizers (IC) from century-old experimental fields were evaluated for Azotobacter diversity by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Bray\u2013Curtis\u2019s similarity index of the ARDRA data of the isolates was analyzed by non-metric multi-dimensional scaling and hierarchical cluster analysis. The results revealed that the long-term organically managed soil recorded significantly higher soil organic carbon, microbial biomass carbon, and total culturable bacterial counts, whereas the chemical fertilized and control soils remained unaffected. Though the Azotobacter population was significantly higher in OM soil than IC and control soils, the genetic diversity was unaffected due to long-term addition of either organic manures or inorganic chemical fertilizers. This result implies the importance of continuous addition of organic manures and also the optimal use of inorganic chemical fertilizers without disturbing the biological properties of the soil.",
"genre": "article",
"id": "sg:pub.10.1007/s13213-013-0600-6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018882",
"issn": [
"1590-4261",
"1869-2044"
],
"name": "Annals of Microbiology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "63"
}
],
"keywords": [
"inorganic chemical fertilizers",
"semi-arid Alfisol",
"organic manure",
"chemical fertilizers",
"Amplified Ribosomal DNA Restriction Analysis",
"higher soil organic carbon",
"non-metric multi-dimensional scaling",
"total culturable bacterial counts",
"Bray-Curtis similarity index",
"soil organic carbon",
"microbial biomass carbon",
"nutrient management systems",
"inorganic nutrient amendment",
"long-term addition",
"long-term productivity",
"culturable bacterial counts",
"similarity index",
"OM soil",
"biomass carbon",
"soil health",
"control soil",
"Azotobacter population",
"nutrient amendments",
"multi-dimensional scaling",
"organic carbon",
"unfertilized control",
"microbial diversity",
"soil",
"genetic diversity",
"ARDRA data",
"experimental field",
"manure",
"hierarchical cluster analysis",
"fertilizer",
"diversity",
"ribosomal DNA restriction analysis",
"Alfisol",
"cluster analysis",
"DNA restriction analysis",
"carbon",
"biological properties",
"continuous addition",
"management system",
"amendments",
"Azotobacter",
"productivity",
"biological processes",
"chemicals",
"impact",
"bacterial counts",
"population",
"optimal use",
"importance",
"changes",
"index",
"health",
"present study",
"results",
"restriction analysis",
"use",
"addition",
"analysis",
"scaling",
"data",
"field",
"process",
"study",
"control",
"system",
"count",
"properties",
"isolates"
],
"name": "Diversity of cultivable Azotobacter in the semi-arid alfisol receiving long-term organic and inorganic nutrient amendments",
"pagination": "1397-1404",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026998973"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13213-013-0600-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13213-013-0600-6",
"https://app.dimensions.ai/details/publication/pub.1026998973"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_598.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13213-013-0600-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13213-013-0600-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13213-013-0600-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13213-013-0600-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13213-013-0600-6'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
22 PREDICATES
104 URIs
89 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s13213-013-0600-6 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0605 |
3 | ″ | schema:author | N51c634c19d0c41a48f5dc868b8b14a1c |
4 | ″ | schema:citation | sg:pub.10.1007/bf00336275 |
5 | ″ | ″ | sg:pub.10.1007/bf00647664 |
6 | ″ | ″ | sg:pub.10.1007/bf02289565 |
7 | ″ | ″ | sg:pub.10.1007/s00203-009-0508-5 |
8 | ″ | ″ | sg:pub.10.1007/s00374-008-0306-2 |
9 | ″ | ″ | sg:pub.10.1007/s003740100413 |
10 | ″ | ″ | sg:pub.10.1007/s11274-008-9713-7 |
11 | ″ | schema:datePublished | 2013-01-17 |
12 | ″ | schema:datePublishedReg | 2013-01-17 |
13 | ″ | schema:description | Monitoring the biological processes and microbial diversity is essential for sustaining the soil health for long-term productivity. In the present study, the impact of long-term nutrient management systems on changes in Azotobacter diversity of Indian semi-arid alfisol was assessed. Three soils, i.e., unfertilized control, soils amended with organic manures (OM), and with inorganic chemical fertilizers (IC) from century-old experimental fields were evaluated for Azotobacter diversity by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Bray–Curtis’s similarity index of the ARDRA data of the isolates was analyzed by non-metric multi-dimensional scaling and hierarchical cluster analysis. The results revealed that the long-term organically managed soil recorded significantly higher soil organic carbon, microbial biomass carbon, and total culturable bacterial counts, whereas the chemical fertilized and control soils remained unaffected. Though the Azotobacter population was significantly higher in OM soil than IC and control soils, the genetic diversity was unaffected due to long-term addition of either organic manures or inorganic chemical fertilizers. This result implies the importance of continuous addition of organic manures and also the optimal use of inorganic chemical fertilizers without disturbing the biological properties of the soil. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | Na43094806aab4d3082c8af5502b3cefb |
18 | ″ | ″ | Nf35205204a4e4e7c96c05a6b38a9918e |
19 | ″ | ″ | sg:journal.1018882 |
20 | ″ | schema:keywords | ARDRA data |
21 | ″ | ″ | Alfisol |
22 | ″ | ″ | Amplified Ribosomal DNA Restriction Analysis |
23 | ″ | ″ | Azotobacter |
24 | ″ | ″ | Azotobacter population |
25 | ″ | ″ | Bray-Curtis similarity index |
26 | ″ | ″ | DNA restriction analysis |
27 | ″ | ″ | OM soil |
28 | ″ | ″ | addition |
29 | ″ | ″ | amendments |
30 | ″ | ″ | analysis |
31 | ″ | ″ | bacterial counts |
32 | ″ | ″ | biological processes |
33 | ″ | ″ | biological properties |
34 | ″ | ″ | biomass carbon |
35 | ″ | ″ | carbon |
36 | ″ | ″ | changes |
37 | ″ | ″ | chemical fertilizers |
38 | ″ | ″ | chemicals |
39 | ″ | ″ | cluster analysis |
40 | ″ | ″ | continuous addition |
41 | ″ | ″ | control |
42 | ″ | ″ | control soil |
43 | ″ | ″ | count |
44 | ″ | ″ | culturable bacterial counts |
45 | ″ | ″ | data |
46 | ″ | ″ | diversity |
47 | ″ | ″ | experimental field |
48 | ″ | ″ | fertilizer |
49 | ″ | ″ | field |
50 | ″ | ″ | genetic diversity |
51 | ″ | ″ | health |
52 | ″ | ″ | hierarchical cluster analysis |
53 | ″ | ″ | higher soil organic carbon |
54 | ″ | ″ | impact |
55 | ″ | ″ | importance |
56 | ″ | ″ | index |
57 | ″ | ″ | inorganic chemical fertilizers |
58 | ″ | ″ | inorganic nutrient amendment |
59 | ″ | ″ | isolates |
60 | ″ | ″ | long-term addition |
61 | ″ | ″ | long-term productivity |
62 | ″ | ″ | management system |
63 | ″ | ″ | manure |
64 | ″ | ″ | microbial biomass carbon |
65 | ″ | ″ | microbial diversity |
66 | ″ | ″ | multi-dimensional scaling |
67 | ″ | ″ | non-metric multi-dimensional scaling |
68 | ″ | ″ | nutrient amendments |
69 | ″ | ″ | nutrient management systems |
70 | ″ | ″ | optimal use |
71 | ″ | ″ | organic carbon |
72 | ″ | ″ | organic manure |
73 | ″ | ″ | population |
74 | ″ | ″ | present study |
75 | ″ | ″ | process |
76 | ″ | ″ | productivity |
77 | ″ | ″ | properties |
78 | ″ | ″ | restriction analysis |
79 | ″ | ″ | results |
80 | ″ | ″ | ribosomal DNA restriction analysis |
81 | ″ | ″ | scaling |
82 | ″ | ″ | semi-arid Alfisol |
83 | ″ | ″ | similarity index |
84 | ″ | ″ | soil |
85 | ″ | ″ | soil health |
86 | ″ | ″ | soil organic carbon |
87 | ″ | ″ | study |
88 | ″ | ″ | system |
89 | ″ | ″ | total culturable bacterial counts |
90 | ″ | ″ | unfertilized control |
91 | ″ | ″ | use |
92 | ″ | schema:name | Diversity of cultivable Azotobacter in the semi-arid alfisol receiving long-term organic and inorganic nutrient amendments |
93 | ″ | schema:pagination | 1397-1404 |
94 | ″ | schema:productId | N33928ac3653d47b5b80a0b1e7563e6f4 |
95 | ″ | ″ | Nb1a8906eaab247b3977eaedafa34e5e0 |
96 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026998973 |
97 | ″ | ″ | https://doi.org/10.1007/s13213-013-0600-6 |
98 | ″ | schema:sdDatePublished | 2022-05-10T10:09 |
99 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
100 | ″ | schema:sdPublisher | Nad63bae04acc46abb888f33c13d6c7b6 |
101 | ″ | schema:url | https://doi.org/10.1007/s13213-013-0600-6 |
102 | ″ | sgo:license | sg:explorer/license/ |
103 | ″ | sgo:sdDataset | articles |
104 | ″ | rdf:type | schema:ScholarlyArticle |
105 | N09497b6a06064cb4ae2f5dffbe5c5087 | rdf:first | sg:person.01143753642.74 |
106 | ″ | rdf:rest | N7f59d99d6ed44252b2fc0cb11614758c |
107 | N33928ac3653d47b5b80a0b1e7563e6f4 | schema:name | doi |
108 | ″ | schema:value | 10.1007/s13213-013-0600-6 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | N51c634c19d0c41a48f5dc868b8b14a1c | rdf:first | N728f8d33112a45bf906190ff9fe313cd |
111 | ″ | rdf:rest | N09497b6a06064cb4ae2f5dffbe5c5087 |
112 | N728f8d33112a45bf906190ff9fe313cd | schema:affiliation | grid-institutes:grid.412906.8 |
113 | ″ | schema:familyName | Cinnadurai |
114 | ″ | schema:givenName | Chinnappan |
115 | ″ | rdf:type | schema:Person |
116 | N7f59d99d6ed44252b2fc0cb11614758c | rdf:first | sg:person.0674514564.36 |
117 | ″ | rdf:rest | rdf:nil |
118 | Na43094806aab4d3082c8af5502b3cefb | schema:issueNumber | 4 |
119 | ″ | rdf:type | schema:PublicationIssue |
120 | Nad63bae04acc46abb888f33c13d6c7b6 | schema:name | Springer Nature - SN SciGraph project |
121 | ″ | rdf:type | schema:Organization |
122 | Nb1a8906eaab247b3977eaedafa34e5e0 | schema:name | dimensions_id |
123 | ″ | schema:value | pub.1026998973 |
124 | ″ | rdf:type | schema:PropertyValue |
125 | Nf35205204a4e4e7c96c05a6b38a9918e | schema:volumeNumber | 63 |
126 | ″ | rdf:type | schema:PublicationVolume |
127 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Biological Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0605 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Microbiology |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | sg:journal.1018882 | schema:issn | 1590-4261 |
134 | ″ | ″ | 1869-2044 |
135 | ″ | schema:name | Annals of Microbiology |
136 | ″ | schema:publisher | Springer Nature |
137 | ″ | rdf:type | schema:Periodical |
138 | sg:person.01143753642.74 | schema:affiliation | grid-institutes:grid.412906.8 |
139 | ″ | schema:familyName | Gopalaswamy |
140 | ″ | schema:givenName | Ganesan |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143753642.74 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.0674514564.36 | schema:affiliation | grid-institutes:grid.412906.8 |
144 | ″ | schema:familyName | Balachandar |
145 | ″ | schema:givenName | Dananjeyan |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674514564.36 |
147 | ″ | rdf:type | schema:Person |
148 | sg:pub.10.1007/bf00336275 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1086059298 |
149 | ″ | ″ | https://doi.org/10.1007/bf00336275 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1007/bf00647664 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023567778 |
152 | ″ | ″ | https://doi.org/10.1007/bf00647664 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1007/bf02289565 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044215102 |
155 | ″ | ″ | https://doi.org/10.1007/bf02289565 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | sg:pub.10.1007/s00203-009-0508-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004546670 |
158 | ″ | ″ | https://doi.org/10.1007/s00203-009-0508-5 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | sg:pub.10.1007/s00374-008-0306-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019290027 |
161 | ″ | ″ | https://doi.org/10.1007/s00374-008-0306-2 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1007/s003740100413 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037903223 |
164 | ″ | ″ | https://doi.org/10.1007/s003740100413 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | sg:pub.10.1007/s11274-008-9713-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011111241 |
167 | ″ | ″ | https://doi.org/10.1007/s11274-008-9713-7 |
168 | ″ | rdf:type | schema:CreativeWork |
169 | grid-institutes:grid.412906.8 | schema:alternateName | Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India |
170 | ″ | schema:name | Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003, Coimbatore, India |
171 | ″ | rdf:type | schema:Organization |