Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05-24

AUTHORS

Shu-Ping Zou, Kuo Zhao, Zhi-Jian Wang, Bo Zhang, Zhi-Qiang Liu, Yu-Guo Zheng

ABSTRACT

D-pantothenic acid (D-PA), as a crucial vitamin, is widely used in food, animal feed, cosmetics, and pharmaceutical industries. In our previous work, recombinant Escherichia coli W3110 for production of D-PA was constructed through metabolic pathway modification. In this study, to enhance D-PA production, statistical optimization techniques including Plackett–Burman (PB) design and Box-Behnken design (BBD) first were adopted to optimize the culture condition. The results showed that the glucose, β-alanine and (NH4)2SO4 have the most significant effects on D-PA biosynthesis. The response surface model based on BBD predicted that the optimal concentration is glucose 56.0 g/L, β-alanine 2.25 g/L and (NH4)2SO4 11.8 g/L, the D-PA titer increases from 3.2 g/L to 6.73 g/L shake flask fermentation. For the fed-batch fermentation in 5 L fermenter, the isoleucine feeding strategy greatly increased the titer and productivity of D-PA. As a result, titer (31.6 g/L) and productivity (13.2 g/L·d) of D-PA were achieved, they increased by 4.66 times and 2.65 times, respectively, compared with batch culture. At the same time, the accumulation of acetate reduced from 29.79 g/L to 8.55 g/L in the fed-batch fermentation. These results demonstrated that the optimization of medium composition and the cell growth rate are important to increase the concentration of D-PA for microbial fermentation. This work laid the foundation for further research on the application of D-PA microbial synthesis. More... »

PAGES

295

References to SciGraph publications

  • 2008-09-12. Glial Metabolism of Isoleucine in NEUROCHEMICAL RESEARCH
  • 2018-10-10. Optimization of fermentation conditions for an Escherichia coli strain engineered using the response surface method to produce a novel therapeutic DNA vaccine for rheumatoid arthritis in JOURNAL OF BIOLOGICAL ENGINEERING
  • 2019-08-27. Leucine depletion extends the lifespans of leucine-auxotrophic fission yeast by inducing Ecl1 family genes via the transcription factor Fil1 in MOLECULAR GENETICS AND GENOMICS
  • 2018-03-29. Production of l-valine from metabolically engineered Corynebacterium glutamicum in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-10-19. Optimization of glucose feeding approaches for enhanced glucosamine and N-acetylglucosamine production by an engineered Escherichia coli in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 2018-07-21. Using response surface methodology in combination with Plackett–Burman design for optimization of culture media and extracellular expression of Trichoderma reesei synthetic endoglucanase II in Escherichia coli in MOLECULAR BIOLOGY REPORTS
  • 2020-04-27. Optimization of fermentation conditions for the production of recombinant feruloyl esterase from Burkholderia pyrrocinia B1213 in 3 BIOTECH
  • 2004-12. Cloning and expression of d -lactonohydrolase cDNA from Fusarium moniliforme in Saccharomyces cerevisiae in BIOTECHNOLOGY LETTERS
  • 2012-02-11. Effect of feeding strategy on l-tryptophan production by recombinant Escherichia coli in ANNALS OF MICROBIOLOGY
  • 2019-02-19. Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization in 3 BIOTECH
  • 2013-05-09. Comparative study of the application of central composite face-centred (CCF) and Box–Behnken designs (BBD) to study the effect of demographic characteristics on HIV risk in South Africa in NETWORK MODELING ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13205-021-02773-0

    DOI

    http://dx.doi.org/10.1007/s13205-021-02773-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138301956

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34136332


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zou", 
            "givenName": "Shu-Ping", 
            "id": "sg:person.01156710533.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710533.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Kuo", 
            "id": "sg:person.014347746361.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014347746361.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhi-Jian", 
            "id": "sg:person.016607626030.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016607626030.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Bo", 
            "id": "sg:person.016106244405.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106244405.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhi-Qiang", 
            "id": "sg:person.01256734541.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256734541.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Yu-Guo", 
            "id": "sg:person.01144225405.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144225405.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13721-013-0032-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045045175", 
              "https://doi.org/10.1007/s13721-013-0032-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-011-1046-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047581849", 
              "https://doi.org/10.1007/s10295-011-1046-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-018-4272-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105733679", 
              "https://doi.org/10.1007/s11033-018-4272-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13213-012-0419-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000174588", 
              "https://doi.org/10.1007/s13213-012-0419-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11064-008-9840-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028281173", 
              "https://doi.org/10.1007/s11064-008-9840-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10529-004-5320-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044857360", 
              "https://doi.org/10.1007/s10529-004-5320-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-019-01592-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120635373", 
              "https://doi.org/10.1007/s00438-019-01592-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13036-018-0110-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107532610", 
              "https://doi.org/10.1186/s13036-018-0110-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13205-019-1609-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112226208", 
              "https://doi.org/10.1007/s13205-019-1609-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13205-020-02198-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127161235", 
              "https://doi.org/10.1007/s13205-020-02198-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-018-8952-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101845581", 
              "https://doi.org/10.1007/s00253-018-8952-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-24", 
        "datePublishedReg": "2021-05-24", 
        "description": "D-pantothenic acid (D-PA), as a crucial vitamin, is widely used in food, animal feed, cosmetics, and pharmaceutical industries. In our previous work, recombinant Escherichia coli W3110 for production of D-PA was constructed through metabolic pathway modification. In this study, to enhance D-PA production, statistical optimization techniques including Plackett\u2013Burman (PB) design and Box-Behnken design (BBD) first were adopted to optimize the culture condition. The results showed that the glucose, \u03b2-alanine and (NH4)2SO4 have the most significant effects on D-PA biosynthesis. The response surface model based on BBD predicted that the optimal concentration is glucose 56.0\u00a0g/L, \u03b2-alanine 2.25\u00a0g/L and (NH4)2SO4 11.8\u00a0g/L, the D-PA titer increases from 3.2\u00a0g/L to 6.73\u00a0g/L shake flask fermentation. For the fed-batch fermentation in 5 L fermenter, the isoleucine feeding strategy greatly increased the titer and productivity of D-PA. As a result, titer (31.6\u00a0g/L) and productivity (13.2\u00a0g/L\u00b7d) of D-PA were achieved, they increased by 4.66 times and 2.65 times, respectively, compared with batch culture. At the same time, the accumulation of acetate reduced from 29.79\u00a0g/L to 8.55\u00a0g/L in the fed-batch fermentation. These results demonstrated that the optimization of medium composition and the cell growth rate are important to increase the concentration of D-PA for microbial fermentation. This work laid the foundation for further research on the application of D-PA microbial synthesis.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13205-021-02773-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045498", 
            "issn": [
              "2190-572X", 
              "2190-5738"
            ], 
            "name": "3 Biotech", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "recombinant Escherichia coli W3110", 
          "Escherichia coli W3110", 
          "coli W3110", 
          "metabolic pathway modification", 
          "PA biosynthesis", 
          "fed-batch fermentation", 
          "fed-batch fermentation", 
          "fermentation conditions optimization", 
          "cell growth rate", 
          "microbial fermentation", 
          "Box-Behnken design", 
          "flask fermentation", 
          "PA production", 
          "accumulation of acetate", 
          "microbial synthesis", 
          "W3110", 
          "culture conditions", 
          "fermentation", 
          "pathway modification", 
          "batch culture", 
          "pantothenic acid", 
          "animal feed", 
          "growth rate", 
          "Plackett-Burman design", 
          "medium composition", 
          "biosynthesis", 
          "condition optimization", 
          "pharmaceutical industry", 
          "acid", 
          "productivity", 
          "overproduction", 
          "alanine", 
          "isoleucine", 
          "production", 
          "fermenter", 
          "optimal concentration", 
          "accumulation", 
          "cosmetics", 
          "design", 
          "applications", 
          "optimization techniques", 
          "titer increases", 
          "synthesis", 
          "optimization", 
          "modification", 
          "statistical optimization techniques", 
          "culture", 
          "significant effect", 
          "PA", 
          "titers", 
          "composition", 
          "work", 
          "same time", 
          "previous work", 
          "concentration", 
          "glucose", 
          "food", 
          "technique", 
          "feed", 
          "vitamin", 
          "results", 
          "time", 
          "industry", 
          "strategies", 
          "acetate", 
          "increase", 
          "further research", 
          "conditions", 
          "study", 
          "effect", 
          "rate", 
          "foundation", 
          "research", 
          "model", 
          "response surface model", 
          "surface model", 
          "crucial vitamin", 
          "glucose 56.0", 
          "PA titer increases", 
          "PA microbial synthesis"
        ], 
        "name": "Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110", 
        "pagination": "295", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138301956"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13205-021-02773-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34136332"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13205-021-02773-0", 
          "https://app.dimensions.ai/details/publication/pub.1138301956"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_913.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13205-021-02773-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13205-021-02773-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13205-021-02773-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13205-021-02773-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13205-021-02773-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      22 PREDICATES      116 URIs      97 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13205-021-02773-0 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N5e01b304342646339c0504e8b1196621
    4 schema:citation sg:pub.10.1007/s00253-018-8952-2
    5 sg:pub.10.1007/s00438-019-01592-6
    6 sg:pub.10.1007/s10295-011-1046-0
    7 sg:pub.10.1007/s10529-004-5320-3
    8 sg:pub.10.1007/s11033-018-4272-y
    9 sg:pub.10.1007/s11064-008-9840-4
    10 sg:pub.10.1007/s13205-019-1609-8
    11 sg:pub.10.1007/s13205-020-02198-1
    12 sg:pub.10.1007/s13213-012-0419-6
    13 sg:pub.10.1007/s13721-013-0032-z
    14 sg:pub.10.1186/s13036-018-0110-y
    15 schema:datePublished 2021-05-24
    16 schema:datePublishedReg 2021-05-24
    17 schema:description D-pantothenic acid (D-PA), as a crucial vitamin, is widely used in food, animal feed, cosmetics, and pharmaceutical industries. In our previous work, recombinant Escherichia coli W3110 for production of D-PA was constructed through metabolic pathway modification. In this study, to enhance D-PA production, statistical optimization techniques including Plackett–Burman (PB) design and Box-Behnken design (BBD) first were adopted to optimize the culture condition. The results showed that the glucose, β-alanine and (NH4)2SO4 have the most significant effects on D-PA biosynthesis. The response surface model based on BBD predicted that the optimal concentration is glucose 56.0 g/L, β-alanine 2.25 g/L and (NH4)2SO4 11.8 g/L, the D-PA titer increases from 3.2 g/L to 6.73 g/L shake flask fermentation. For the fed-batch fermentation in 5 L fermenter, the isoleucine feeding strategy greatly increased the titer and productivity of D-PA. As a result, titer (31.6 g/L) and productivity (13.2 g/L·d) of D-PA were achieved, they increased by 4.66 times and 2.65 times, respectively, compared with batch culture. At the same time, the accumulation of acetate reduced from 29.79 g/L to 8.55 g/L in the fed-batch fermentation. These results demonstrated that the optimization of medium composition and the cell growth rate are important to increase the concentration of D-PA for microbial fermentation. This work laid the foundation for further research on the application of D-PA microbial synthesis.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N26b4e61ee8904e6a80bba84d547f4284
    22 Nf2ad4a692af84531a8de563f5b35d0cc
    23 sg:journal.1045498
    24 schema:keywords Box-Behnken design
    25 Escherichia coli W3110
    26 PA
    27 PA biosynthesis
    28 PA microbial synthesis
    29 PA production
    30 PA titer increases
    31 Plackett-Burman design
    32 W3110
    33 accumulation
    34 accumulation of acetate
    35 acetate
    36 acid
    37 alanine
    38 animal feed
    39 applications
    40 batch culture
    41 biosynthesis
    42 cell growth rate
    43 coli W3110
    44 composition
    45 concentration
    46 condition optimization
    47 conditions
    48 cosmetics
    49 crucial vitamin
    50 culture
    51 culture conditions
    52 design
    53 effect
    54 fed-batch fermentation
    55 feed
    56 fermentation
    57 fermentation conditions optimization
    58 fermenter
    59 flask fermentation
    60 food
    61 foundation
    62 further research
    63 glucose
    64 glucose 56.0
    65 growth rate
    66 increase
    67 industry
    68 isoleucine
    69 medium composition
    70 metabolic pathway modification
    71 microbial fermentation
    72 microbial synthesis
    73 model
    74 modification
    75 optimal concentration
    76 optimization
    77 optimization techniques
    78 overproduction
    79 pantothenic acid
    80 pathway modification
    81 pharmaceutical industry
    82 previous work
    83 production
    84 productivity
    85 rate
    86 recombinant Escherichia coli W3110
    87 research
    88 response surface model
    89 results
    90 same time
    91 significant effect
    92 statistical optimization techniques
    93 strategies
    94 study
    95 surface model
    96 synthesis
    97 technique
    98 time
    99 titer increases
    100 titers
    101 vitamin
    102 work
    103 schema:name Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110
    104 schema:pagination 295
    105 schema:productId Nad4d4aef68c24c13a6623492fe27f2bd
    106 Nd3730a1310c54da9b4a895491db6a9f1
    107 Nde90816d3c814b5880cf981fede2e4e9
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138301956
    109 https://doi.org/10.1007/s13205-021-02773-0
    110 schema:sdDatePublished 2022-01-01T19:04
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher Na600ff01c5594ace8ed2641a02f0839b
    113 schema:url https://doi.org/10.1007/s13205-021-02773-0
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N26b4e61ee8904e6a80bba84d547f4284 schema:issueNumber 6
    118 rdf:type schema:PublicationIssue
    119 N27009919c4704611b643281adb77363f rdf:first sg:person.01256734541.85
    120 rdf:rest N78a6e5c38936449a8e505c045ce039ca
    121 N5e01b304342646339c0504e8b1196621 rdf:first sg:person.01156710533.23
    122 rdf:rest Ne0159cdcb4ed45b390454f13e2315ab8
    123 N78a6e5c38936449a8e505c045ce039ca rdf:first sg:person.01144225405.06
    124 rdf:rest rdf:nil
    125 Na600ff01c5594ace8ed2641a02f0839b schema:name Springer Nature - SN SciGraph project
    126 rdf:type schema:Organization
    127 Nad4d4aef68c24c13a6623492fe27f2bd schema:name doi
    128 schema:value 10.1007/s13205-021-02773-0
    129 rdf:type schema:PropertyValue
    130 Nd0bc2305347241158e8938a8619718e1 rdf:first sg:person.016607626030.87
    131 rdf:rest Nfa16b64dab4242a7b99c5e34c2f7c307
    132 Nd3730a1310c54da9b4a895491db6a9f1 schema:name pubmed_id
    133 schema:value 34136332
    134 rdf:type schema:PropertyValue
    135 Nde90816d3c814b5880cf981fede2e4e9 schema:name dimensions_id
    136 schema:value pub.1138301956
    137 rdf:type schema:PropertyValue
    138 Ne0159cdcb4ed45b390454f13e2315ab8 rdf:first sg:person.014347746361.48
    139 rdf:rest Nd0bc2305347241158e8938a8619718e1
    140 Nf2ad4a692af84531a8de563f5b35d0cc schema:volumeNumber 11
    141 rdf:type schema:PublicationVolume
    142 Nfa16b64dab4242a7b99c5e34c2f7c307 rdf:first sg:person.016106244405.13
    143 rdf:rest N27009919c4704611b643281adb77363f
    144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Biological Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Microbiology
    149 rdf:type schema:DefinedTerm
    150 sg:journal.1045498 schema:issn 2190-572X
    151 2190-5738
    152 schema:name 3 Biotech
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.01144225405.06 schema:affiliation grid-institutes:grid.469325.f
    156 schema:familyName Zheng
    157 schema:givenName Yu-Guo
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144225405.06
    159 rdf:type schema:Person
    160 sg:person.01156710533.23 schema:affiliation grid-institutes:grid.469325.f
    161 schema:familyName Zou
    162 schema:givenName Shu-Ping
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710533.23
    164 rdf:type schema:Person
    165 sg:person.01256734541.85 schema:affiliation grid-institutes:grid.469325.f
    166 schema:familyName Liu
    167 schema:givenName Zhi-Qiang
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256734541.85
    169 rdf:type schema:Person
    170 sg:person.014347746361.48 schema:affiliation grid-institutes:grid.469325.f
    171 schema:familyName Zhao
    172 schema:givenName Kuo
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014347746361.48
    174 rdf:type schema:Person
    175 sg:person.016106244405.13 schema:affiliation grid-institutes:grid.469325.f
    176 schema:familyName Zhang
    177 schema:givenName Bo
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106244405.13
    179 rdf:type schema:Person
    180 sg:person.016607626030.87 schema:affiliation grid-institutes:grid.469325.f
    181 schema:familyName Wang
    182 schema:givenName Zhi-Jian
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016607626030.87
    184 rdf:type schema:Person
    185 sg:pub.10.1007/s00253-018-8952-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101845581
    186 https://doi.org/10.1007/s00253-018-8952-2
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00438-019-01592-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120635373
    189 https://doi.org/10.1007/s00438-019-01592-6
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10295-011-1046-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047581849
    192 https://doi.org/10.1007/s10295-011-1046-0
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10529-004-5320-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044857360
    195 https://doi.org/10.1007/s10529-004-5320-3
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11033-018-4272-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105733679
    198 https://doi.org/10.1007/s11033-018-4272-y
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11064-008-9840-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028281173
    201 https://doi.org/10.1007/s11064-008-9840-4
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s13205-019-1609-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112226208
    204 https://doi.org/10.1007/s13205-019-1609-8
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s13205-020-02198-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127161235
    207 https://doi.org/10.1007/s13205-020-02198-1
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s13213-012-0419-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000174588
    210 https://doi.org/10.1007/s13213-012-0419-6
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s13721-013-0032-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045045175
    213 https://doi.org/10.1007/s13721-013-0032-z
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/s13036-018-0110-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107532610
    216 https://doi.org/10.1186/s13036-018-0110-y
    217 rdf:type schema:CreativeWork
    218 grid-institutes:grid.469325.f schema:alternateName Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People’s Republic of China
    219 schema:name Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, People’s Republic of China
    220 The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People’s Republic of China
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...