Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-28

AUTHORS

Aphisit Poonsrisawat, Atchara Paemanee, Sittichoke Wanlapatit, Kuakoon Piyachomkwan, Lily Eurwilaichitr, Verawat Champreda

ABSTRACT

In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry. More... »

PAGES

290

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13205-017-0924-1

DOI

http://dx.doi.org/10.1007/s13205-017-0924-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091373960

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28868217


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.419250.b", 
          "name": [
            "Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poonsrisawat", 
        "givenName": "Aphisit", 
        "id": "sg:person.012361335567.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361335567.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.419250.b", 
          "name": [
            "Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paemanee", 
        "givenName": "Atchara", 
        "id": "sg:person.01151232760.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151232760.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cassava and Starch Technology Research Laboratory, National Center for Genetic Engineering and Biotechnology, Kasetsart University, Bang Khen, 10900, Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cassava and Starch Technology Research Laboratory, National Center for Genetic Engineering and Biotechnology, Kasetsart University, Bang Khen, 10900, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wanlapatit", 
        "givenName": "Sittichoke", 
        "id": "sg:person.011036137322.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036137322.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cassava and Starch Technology Research Laboratory, National Center for Genetic Engineering and Biotechnology, Kasetsart University, Bang Khen, 10900, Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cassava and Starch Technology Research Laboratory, National Center for Genetic Engineering and Biotechnology, Kasetsart University, Bang Khen, 10900, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piyachomkwan", 
        "givenName": "Kuakoon", 
        "id": "sg:person.016541315007.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541315007.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.419250.b", 
          "name": [
            "Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eurwilaichitr", 
        "givenName": "Lily", 
        "id": "sg:person.0610170460.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610170460.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.419250.b", 
          "name": [
            "Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Champreda", 
        "givenName": "Verawat", 
        "id": "sg:person.01333574560.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333574560.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11103-005-2270-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021596670", 
          "https://doi.org/10.1007/s11103-005-2270-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-010-0910-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018589796", 
          "https://doi.org/10.1007/s10295-010-0910-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11705-010-1026-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008372420", 
          "https://doi.org/10.1007/s11705-010-1026-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-6-167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015098432", 
          "https://doi.org/10.1186/1754-6834-6-167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-005-0229-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049367841", 
          "https://doi.org/10.1007/s00253-005-0229-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-011-1053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017272818", 
          "https://doi.org/10.1007/s10295-011-1053-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-28", 
    "datePublishedReg": "2017-08-28", 
    "description": "In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45\u00a0Pa\u00a0s with the enzyme dosage of 2.19\u00a0mg/g on a dried weight basis within the first 2\u00a0h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4\u00a0mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96\u00a0h at 40\u00a0\u00b0C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13205-017-0924-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045498", 
        "issn": [
          "2190-572X", 
          "2190-5738"
        ], 
        "name": "3 Biotech", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "viscosity reduction", 
      "initial solid loading", 
      "low-energy processing", 
      "cassava pulp", 
      "cell wall degrading enzymes", 
      "solid loading", 
      "raw cassava pulp", 
      "simultaneous saccharification", 
      "ethanol production process", 
      "bench-scale bioreactor", 
      "complex viscosity", 
      "plant cell wall fibers", 
      "liquefaction step", 
      "enzymatic hydrolysis efficiency", 
      "mixture viscosity", 
      "proteomic analysis", 
      "efficient ethanol production process", 
      "production process", 
      "cell wall fibers", 
      "electron microscopy", 
      "degrading enzymes", 
      "hydrolysis efficiency", 
      "viscosity", 
      "bioethanol production", 
      "enzyme", 
      "enzyme dosage", 
      "final ethanol concentration", 
      "starch granules", 
      "total starch", 
      "glucose yield", 
      "biofuel industry", 
      "enzyme preparation", 
      "cellulose content", 
      "enzymatic processes", 
      "starch", 
      "loading", 
      "saccharification", 
      "ethanol concentration", 
      "wall fibers", 
      "pulp", 
      "bioreactor", 
      "Saccharomyces", 
      "theoretical yield", 
      "crude starch", 
      "weight basis", 
      "complex mixtures", 
      "process", 
      "cellulases", 
      "reduction", 
      "xylanases", 
      "substrate", 
      "efficiency", 
      "partial destruction", 
      "microscopy", 
      "fibers", 
      "glucan", 
      "glycosyl", 
      "PA", 
      "processing", 
      "mixture", 
      "fermentation", 
      "degradation", 
      "industry", 
      "glucose/", 
      "endo", 
      "family", 
      "granules", 
      "rapid decrease", 
      "yield", 
      "amylase", 
      "production", 
      "step", 
      "preparation", 
      "content", 
      "results", 
      "potential", 
      "concentration", 
      "dosage", 
      "analysis", 
      "decrease", 
      "basis", 
      "reaction", 
      "destruction", 
      "study"
    ], 
    "name": "Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production", 
    "pagination": "290", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091373960"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13205-017-0924-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28868217"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13205-017-0924-1", 
      "https://app.dimensions.ai/details/publication/pub.1091373960"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_724.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13205-017-0924-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13205-017-0924-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13205-017-0924-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13205-017-0924-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13205-017-0924-1'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      115 URIs      101 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13205-017-0924-1 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N5567b9bf2b1f44be8e1dcb38d5f259bb
4 schema:citation sg:pub.10.1007/s00253-005-0229-x
5 sg:pub.10.1007/s10295-010-0910-7
6 sg:pub.10.1007/s10295-011-1053-1
7 sg:pub.10.1007/s11103-005-2270-7
8 sg:pub.10.1007/s11705-010-1026-3
9 sg:pub.10.1186/1754-6834-6-167
10 schema:datePublished 2017-08-28
11 schema:datePublishedReg 2017-08-28
12 schema:description In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N73b1ec576f0f4222b191ca92f81d92bf
16 N9a4a65e1980a4edaafd8c1226c0b7376
17 sg:journal.1045498
18 schema:keywords PA
19 Saccharomyces
20 amylase
21 analysis
22 basis
23 bench-scale bioreactor
24 bioethanol production
25 biofuel industry
26 bioreactor
27 cassava pulp
28 cell wall degrading enzymes
29 cell wall fibers
30 cellulases
31 cellulose content
32 complex mixtures
33 complex viscosity
34 concentration
35 content
36 crude starch
37 decrease
38 degradation
39 degrading enzymes
40 destruction
41 dosage
42 efficiency
43 efficient ethanol production process
44 electron microscopy
45 endo
46 enzymatic hydrolysis efficiency
47 enzymatic processes
48 enzyme
49 enzyme dosage
50 enzyme preparation
51 ethanol concentration
52 ethanol production process
53 family
54 fermentation
55 fibers
56 final ethanol concentration
57 glucan
58 glucose yield
59 glucose/
60 glycosyl
61 granules
62 hydrolysis efficiency
63 industry
64 initial solid loading
65 liquefaction step
66 loading
67 low-energy processing
68 microscopy
69 mixture
70 mixture viscosity
71 partial destruction
72 plant cell wall fibers
73 potential
74 preparation
75 process
76 processing
77 production
78 production process
79 proteomic analysis
80 pulp
81 rapid decrease
82 raw cassava pulp
83 reaction
84 reduction
85 results
86 saccharification
87 simultaneous saccharification
88 solid loading
89 starch
90 starch granules
91 step
92 study
93 substrate
94 theoretical yield
95 total starch
96 viscosity
97 viscosity reduction
98 wall fibers
99 weight basis
100 xylanases
101 yield
102 schema:name Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production
103 schema:pagination 290
104 schema:productId N2902b904ea0842be82c6661a257f039e
105 Na84bc8f31c0b4eb3b6b4d09962a9744a
106 Ncfed90fec7ce4ab2882f87c80e2c566d
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091373960
108 https://doi.org/10.1007/s13205-017-0924-1
109 schema:sdDatePublished 2022-08-04T17:04
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N3a3437f36b7643388b81669936b5312a
112 schema:url https://doi.org/10.1007/s13205-017-0924-1
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N118b34f5aecb4d73a629a7b24779b856 rdf:first sg:person.01151232760.79
117 rdf:rest N9a210d19b5d84be98598d6909b76c218
118 N16d56ae52b1a42fe934b92f2494c376f rdf:first sg:person.01333574560.24
119 rdf:rest rdf:nil
120 N2902b904ea0842be82c6661a257f039e schema:name doi
121 schema:value 10.1007/s13205-017-0924-1
122 rdf:type schema:PropertyValue
123 N3a3437f36b7643388b81669936b5312a schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 N5567b9bf2b1f44be8e1dcb38d5f259bb rdf:first sg:person.012361335567.14
126 rdf:rest N118b34f5aecb4d73a629a7b24779b856
127 N73b1ec576f0f4222b191ca92f81d92bf schema:issueNumber 5
128 rdf:type schema:PublicationIssue
129 N9a210d19b5d84be98598d6909b76c218 rdf:first sg:person.011036137322.70
130 rdf:rest Nacd156c008994769b983e30657eb4e94
131 N9a4a65e1980a4edaafd8c1226c0b7376 schema:volumeNumber 7
132 rdf:type schema:PublicationVolume
133 Na84bc8f31c0b4eb3b6b4d09962a9744a schema:name pubmed_id
134 schema:value 28868217
135 rdf:type schema:PropertyValue
136 Nacd156c008994769b983e30657eb4e94 rdf:first sg:person.016541315007.62
137 rdf:rest Ndddee29533b9454e9952ee813d93e2c9
138 Ncfed90fec7ce4ab2882f87c80e2c566d schema:name dimensions_id
139 schema:value pub.1091373960
140 rdf:type schema:PropertyValue
141 Ndddee29533b9454e9952ee813d93e2c9 rdf:first sg:person.0610170460.40
142 rdf:rest N16d56ae52b1a42fe934b92f2494c376f
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biochemistry and Cell Biology
148 rdf:type schema:DefinedTerm
149 sg:journal.1045498 schema:issn 2190-572X
150 2190-5738
151 schema:name 3 Biotech
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.011036137322.70 schema:affiliation grid-institutes:None
155 schema:familyName Wanlapatit
156 schema:givenName Sittichoke
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036137322.70
158 rdf:type schema:Person
159 sg:person.01151232760.79 schema:affiliation grid-institutes:grid.419250.b
160 schema:familyName Paemanee
161 schema:givenName Atchara
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151232760.79
163 rdf:type schema:Person
164 sg:person.012361335567.14 schema:affiliation grid-institutes:grid.419250.b
165 schema:familyName Poonsrisawat
166 schema:givenName Aphisit
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361335567.14
168 rdf:type schema:Person
169 sg:person.01333574560.24 schema:affiliation grid-institutes:grid.419250.b
170 schema:familyName Champreda
171 schema:givenName Verawat
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333574560.24
173 rdf:type schema:Person
174 sg:person.016541315007.62 schema:affiliation grid-institutes:None
175 schema:familyName Piyachomkwan
176 schema:givenName Kuakoon
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541315007.62
178 rdf:type schema:Person
179 sg:person.0610170460.40 schema:affiliation grid-institutes:grid.419250.b
180 schema:familyName Eurwilaichitr
181 schema:givenName Lily
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610170460.40
183 rdf:type schema:Person
184 sg:pub.10.1007/s00253-005-0229-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049367841
185 https://doi.org/10.1007/s00253-005-0229-x
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s10295-010-0910-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018589796
188 https://doi.org/10.1007/s10295-010-0910-7
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s10295-011-1053-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017272818
191 https://doi.org/10.1007/s10295-011-1053-1
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s11103-005-2270-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021596670
194 https://doi.org/10.1007/s11103-005-2270-7
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11705-010-1026-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008372420
197 https://doi.org/10.1007/s11705-010-1026-3
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/1754-6834-6-167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015098432
200 https://doi.org/10.1186/1754-6834-6-167
201 rdf:type schema:CreativeWork
202 grid-institutes:None schema:alternateName Cassava and Starch Technology Research Laboratory, National Center for Genetic Engineering and Biotechnology, Kasetsart University, Bang Khen, 10900, Bangkok, Thailand
203 schema:name Cassava and Starch Technology Research Laboratory, National Center for Genetic Engineering and Biotechnology, Kasetsart University, Bang Khen, 10900, Bangkok, Thailand
204 rdf:type schema:Organization
205 grid-institutes:grid.419250.b schema:alternateName Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand
206 Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand
207 schema:name Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand
208 Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, 12120, Klong Luang, Pathum Thani, Thailand
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...