Critical current enhancement in a superconducting nanolayer proximitized to a weak-ferromagnetic film View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-13

AUTHORS

Elena Zhitlukhina, Magdaléna Poláčková, Serhii Volkov, Branislav Grančič, Maroš Gregor, Tomaš Plecenik, Mikhail Belogolovskii, Paul Seidel, Andrej Plecenik

ABSTRACT

Vortex-matter manipulation in nanometer-thin type-II superconducting layers plays a substantial role in the performance of related superconducting devices. A traditional way to avoid deterioration of their transport characteristics is to immobilize the magnetic flux lines by natural or artificially introduced pinning sites inside the nanolayer. An alternative approach can be realized in a planar superconductor-based bilayer with a nanometer-thin ferromagnetic film in close proximity. The interaction between Abrikosov vortices and the magnetization texture in a ferromagnetic layer can provide a pinning potential for them. The effect, called magnetic pinning, is the focus of our research aimed to study coupled metallic multilayers based on different combinations of a weak diluted ferromagnetic (NiCu) and superconducting (NbN) films. The latter include those with an ultra-thin insulating interlayer between the two strips, thus cutting off short-range proximity effect. Measurements of the temperature effect on current–voltage curves for samples with different stacking order of the contacting films have been performed. In some configurations, we found a strong growth of the critical current followed by moderate changes in the critical temperature or their complete absence. Related analysis shows that the underlying mechanism is indeed magnetic vortex pinning that can be enhanced further through magnetization engineering enabling optimization of the pinning strength in desired field ranges. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13204-022-02614-3

DOI

http://dx.doi.org/10.1007/s13204-022-02614-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150964003


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Friedrich-Schiller-Universit\u00e4t Jena, 07743, Jena, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "O.O. Galkin Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 03028, Kyiv, Ukraine", 
            "Vasyl\u2019 Stus Donetsk National University, 21021, Vinnytsia, Ukraine", 
            "Institut f\u00fcr Festk\u00f6rperphysik, Friedrich-Schiller-Universit\u00e4t Jena, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhitlukhina", 
        "givenName": "Elena", 
        "id": "sg:person.01306712402.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306712402.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.7634.6", 
          "name": [
            "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pol\u00e1\u010dkov\u00e1", 
        "givenName": "Magdal\u00e9na", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.7634.6", 
          "name": [
            "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "Serhii", 
        "id": "sg:person.012475346365.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475346365.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.7634.6", 
          "name": [
            "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gran\u010di\u010d", 
        "givenName": "Branislav", 
        "id": "sg:person.0705321011.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705321011.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.7634.6", 
          "name": [
            "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregor", 
        "givenName": "Maro\u0161", 
        "id": "sg:person.0727237165.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727237165.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.7634.6", 
          "name": [
            "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plecenik", 
        "givenName": "Toma\u0161", 
        "id": "sg:person.01072465075.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072465075.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Friedrich-Schiller-Universit\u00e4t Jena, 07743, Jena, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Vasyl\u2019 Stus Donetsk National University, 21021, Vinnytsia, Ukraine", 
            "Kyiv Academic University, 03142, Kyiv, Ukraine", 
            "Institut f\u00fcr Festk\u00f6rperphysik, Friedrich-Schiller-Universit\u00e4t Jena, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belogolovskii", 
        "givenName": "Mikhail", 
        "id": "sg:person.015027120531.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027120531.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Friedrich-Schiller-Universit\u00e4t Jena, 07743, Jena, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Friedrich-Schiller-Universit\u00e4t Jena, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seidel", 
        "givenName": "Paul", 
        "id": "sg:person.01116100215.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116100215.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.7634.6", 
          "name": [
            "Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plecenik", 
        "givenName": "Andrej", 
        "id": "sg:person.01354467046.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354467046.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10948-017-4247-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090686153", 
          "https://doi.org/10.1007/s10948-017-4247-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-44515-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048282471", 
          "https://doi.org/10.1007/978-3-540-44515-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-010-0862-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028708196", 
          "https://doi.org/10.1007/s10948-010-0862-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364008230124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040455599", 
          "https://doi.org/10.1134/s0021364008230124"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-13", 
    "datePublishedReg": "2022-09-13", 
    "description": "Vortex-matter manipulation in nanometer-thin type-II superconducting layers plays a substantial role in the performance of related superconducting devices. A traditional way to avoid deterioration of their transport characteristics is to immobilize the magnetic flux lines by natural or artificially introduced pinning sites inside the nanolayer. An alternative approach can be realized in a planar superconductor-based bilayer with a nanometer-thin ferromagnetic film in close proximity. The interaction between Abrikosov vortices and the magnetization texture in a ferromagnetic layer can provide a pinning potential for them. The effect, called magnetic pinning, is the focus of our research aimed to study coupled metallic multilayers based on different combinations of a weak diluted ferromagnetic (NiCu) and superconducting (NbN) films. The latter include those with an ultra-thin insulating interlayer between the two strips, thus cutting off short-range proximity effect. Measurements of the temperature effect on current\u2013voltage curves for samples with different stacking order of the contacting films have been performed. In some configurations, we found a strong growth of the critical current followed by moderate changes in the critical temperature or their complete absence. Related analysis shows that the underlying mechanism is indeed magnetic vortex pinning that can be enhanced further through magnetization engineering enabling optimization of the pinning strength in desired field ranges.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13204-022-02614-3", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.12914124", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8102091", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033811", 
        "issn": [
          "2190-5509", 
          "2190-5517"
        ], 
        "name": "Applied Nanoscience", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "critical current enhancement", 
      "magnetic flux lines", 
      "magnetic pinning", 
      "Abrikosov vortices", 
      "pinning potential", 
      "superconducting devices", 
      "pinning strength", 
      "magnetic vortices", 
      "flux lines", 
      "critical current", 
      "ferromagnetic films", 
      "ferromagnetic layers", 
      "field range", 
      "magnetization textures", 
      "critical temperature", 
      "proximity effect", 
      "metallic multilayers", 
      "current-voltage curves", 
      "vortices", 
      "insulating interlayer", 
      "current enhancement", 
      "transport characteristics", 
      "pinning", 
      "films", 
      "related analysis", 
      "optimization", 
      "alternative approach", 
      "nanolayers", 
      "temperature effects", 
      "layer", 
      "current", 
      "configuration", 
      "multilayers", 
      "interlayer", 
      "approach", 
      "different combinations", 
      "curves", 
      "order", 
      "traditional way", 
      "devices", 
      "engineering", 
      "performance", 
      "measurements", 
      "temperature", 
      "strength", 
      "type II", 
      "texture", 
      "range", 
      "effect", 
      "strips", 
      "way", 
      "enhancement", 
      "lines", 
      "analysis", 
      "interaction", 
      "short-range proximity effect", 
      "characteristics", 
      "close proximity", 
      "strong growth", 
      "deterioration", 
      "manipulation", 
      "combination", 
      "potential", 
      "bilayers", 
      "substantial role", 
      "proximity", 
      "moderate changes", 
      "focus", 
      "samples", 
      "mechanism", 
      "growth", 
      "research", 
      "changes", 
      "sites", 
      "absence", 
      "role", 
      "underlying mechanism", 
      "complete absence"
    ], 
    "name": "Critical current enhancement in a superconducting nanolayer proximitized to a weak-ferromagnetic film", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150964003"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13204-022-02614-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13204-022-02614-3", 
      "https://app.dimensions.ai/details/publication/pub.1150964003"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_944.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13204-022-02614-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02614-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02614-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02614-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02614-3'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      104 URIs      92 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13204-022-02614-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nbf832a29ecb64e3f81831e78187994a8
4 schema:citation sg:pub.10.1007/978-3-540-44515-9
5 sg:pub.10.1007/s10948-010-0862-1
6 sg:pub.10.1007/s10948-017-4247-6
7 sg:pub.10.1134/s0021364008230124
8 schema:datePublished 2022-09-13
9 schema:datePublishedReg 2022-09-13
10 schema:description Vortex-matter manipulation in nanometer-thin type-II superconducting layers plays a substantial role in the performance of related superconducting devices. A traditional way to avoid deterioration of their transport characteristics is to immobilize the magnetic flux lines by natural or artificially introduced pinning sites inside the nanolayer. An alternative approach can be realized in a planar superconductor-based bilayer with a nanometer-thin ferromagnetic film in close proximity. The interaction between Abrikosov vortices and the magnetization texture in a ferromagnetic layer can provide a pinning potential for them. The effect, called magnetic pinning, is the focus of our research aimed to study coupled metallic multilayers based on different combinations of a weak diluted ferromagnetic (NiCu) and superconducting (NbN) films. The latter include those with an ultra-thin insulating interlayer between the two strips, thus cutting off short-range proximity effect. Measurements of the temperature effect on current–voltage curves for samples with different stacking order of the contacting films have been performed. In some configurations, we found a strong growth of the critical current followed by moderate changes in the critical temperature or their complete absence. Related analysis shows that the underlying mechanism is indeed magnetic vortex pinning that can be enhanced further through magnetization engineering enabling optimization of the pinning strength in desired field ranges.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf sg:journal.1033811
14 schema:keywords Abrikosov vortices
15 absence
16 alternative approach
17 analysis
18 approach
19 bilayers
20 changes
21 characteristics
22 close proximity
23 combination
24 complete absence
25 configuration
26 critical current
27 critical current enhancement
28 critical temperature
29 current
30 current enhancement
31 current-voltage curves
32 curves
33 deterioration
34 devices
35 different combinations
36 effect
37 engineering
38 enhancement
39 ferromagnetic films
40 ferromagnetic layers
41 field range
42 films
43 flux lines
44 focus
45 growth
46 insulating interlayer
47 interaction
48 interlayer
49 layer
50 lines
51 magnetic flux lines
52 magnetic pinning
53 magnetic vortices
54 magnetization textures
55 manipulation
56 measurements
57 mechanism
58 metallic multilayers
59 moderate changes
60 multilayers
61 nanolayers
62 optimization
63 order
64 performance
65 pinning
66 pinning potential
67 pinning strength
68 potential
69 proximity
70 proximity effect
71 range
72 related analysis
73 research
74 role
75 samples
76 short-range proximity effect
77 sites
78 strength
79 strips
80 strong growth
81 substantial role
82 superconducting devices
83 temperature
84 temperature effects
85 texture
86 traditional way
87 transport characteristics
88 type II
89 underlying mechanism
90 vortices
91 way
92 schema:name Critical current enhancement in a superconducting nanolayer proximitized to a weak-ferromagnetic film
93 schema:pagination 1-7
94 schema:productId N6c1732d758ab4aa3a45391e36021deef
95 Nde4e3f665adb4adbb20683f164897d7b
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150964003
97 https://doi.org/10.1007/s13204-022-02614-3
98 schema:sdDatePublished 2022-11-24T21:07
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Nc5ab7eaec02648d78036f70c5deaccd2
101 schema:url https://doi.org/10.1007/s13204-022-02614-3
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N24377b54c1b7422a9035af58331dd5a5 rdf:first sg:person.012475346365.98
106 rdf:rest Nf4a9404b3de340d8b3b26164aa59ea96
107 N2eb68fb73fb54178a3eeb0ccbc572f72 rdf:first sg:person.0727237165.23
108 rdf:rest Ncd3789bf28e74c9d9b67258e92d2d994
109 N5a6a2259f2864eafbd7090b9ebb3dd34 rdf:first N609da9414d784677bb22fe9fefb36609
110 rdf:rest N24377b54c1b7422a9035af58331dd5a5
111 N5fa4ebc1641f4daaae6ca8acaf9ce105 rdf:first sg:person.015027120531.13
112 rdf:rest N76ddcb3e96c74715a982eea769d07026
113 N609da9414d784677bb22fe9fefb36609 schema:affiliation grid-institutes:grid.7634.6
114 schema:familyName Poláčková
115 schema:givenName Magdaléna
116 rdf:type schema:Person
117 N6c1732d758ab4aa3a45391e36021deef schema:name dimensions_id
118 schema:value pub.1150964003
119 rdf:type schema:PropertyValue
120 N76ddcb3e96c74715a982eea769d07026 rdf:first sg:person.01116100215.96
121 rdf:rest N7bf590461aee43fea0f6784fee9f764f
122 N7bf590461aee43fea0f6784fee9f764f rdf:first sg:person.01354467046.54
123 rdf:rest rdf:nil
124 Nbf832a29ecb64e3f81831e78187994a8 rdf:first sg:person.01306712402.05
125 rdf:rest N5a6a2259f2864eafbd7090b9ebb3dd34
126 Nc5ab7eaec02648d78036f70c5deaccd2 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Ncd3789bf28e74c9d9b67258e92d2d994 rdf:first sg:person.01072465075.23
129 rdf:rest N5fa4ebc1641f4daaae6ca8acaf9ce105
130 Nde4e3f665adb4adbb20683f164897d7b schema:name doi
131 schema:value 10.1007/s13204-022-02614-3
132 rdf:type schema:PropertyValue
133 Nf4a9404b3de340d8b3b26164aa59ea96 rdf:first sg:person.0705321011.44
134 rdf:rest N2eb68fb73fb54178a3eeb0ccbc572f72
135 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
136 schema:name Engineering
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
139 schema:name Materials Engineering
140 rdf:type schema:DefinedTerm
141 sg:grant.12914124 http://pending.schema.org/fundedItem sg:pub.10.1007/s13204-022-02614-3
142 rdf:type schema:MonetaryGrant
143 sg:grant.8102091 http://pending.schema.org/fundedItem sg:pub.10.1007/s13204-022-02614-3
144 rdf:type schema:MonetaryGrant
145 sg:journal.1033811 schema:issn 2190-5509
146 2190-5517
147 schema:name Applied Nanoscience
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01072465075.23 schema:affiliation grid-institutes:grid.7634.6
151 schema:familyName Plecenik
152 schema:givenName Tomaš
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072465075.23
154 rdf:type schema:Person
155 sg:person.01116100215.96 schema:affiliation grid-institutes:grid.9613.d
156 schema:familyName Seidel
157 schema:givenName Paul
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116100215.96
159 rdf:type schema:Person
160 sg:person.012475346365.98 schema:affiliation grid-institutes:grid.7634.6
161 schema:familyName Volkov
162 schema:givenName Serhii
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475346365.98
164 rdf:type schema:Person
165 sg:person.01306712402.05 schema:affiliation grid-institutes:grid.9613.d
166 schema:familyName Zhitlukhina
167 schema:givenName Elena
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306712402.05
169 rdf:type schema:Person
170 sg:person.01354467046.54 schema:affiliation grid-institutes:grid.7634.6
171 schema:familyName Plecenik
172 schema:givenName Andrej
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354467046.54
174 rdf:type schema:Person
175 sg:person.015027120531.13 schema:affiliation grid-institutes:grid.9613.d
176 schema:familyName Belogolovskii
177 schema:givenName Mikhail
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027120531.13
179 rdf:type schema:Person
180 sg:person.0705321011.44 schema:affiliation grid-institutes:grid.7634.6
181 schema:familyName Grančič
182 schema:givenName Branislav
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705321011.44
184 rdf:type schema:Person
185 sg:person.0727237165.23 schema:affiliation grid-institutes:grid.7634.6
186 schema:familyName Gregor
187 schema:givenName Maroš
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727237165.23
189 rdf:type schema:Person
190 sg:pub.10.1007/978-3-540-44515-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048282471
191 https://doi.org/10.1007/978-3-540-44515-9
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s10948-010-0862-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028708196
194 https://doi.org/10.1007/s10948-010-0862-1
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s10948-017-4247-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090686153
197 https://doi.org/10.1007/s10948-017-4247-6
198 rdf:type schema:CreativeWork
199 sg:pub.10.1134/s0021364008230124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040455599
200 https://doi.org/10.1134/s0021364008230124
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.7634.6 schema:alternateName Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic
203 schema:name Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 84248, Bratislava, Slovak Republic
204 rdf:type schema:Organization
205 grid-institutes:grid.9613.d schema:alternateName Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
206 schema:name Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
207 Kyiv Academic University, 03142, Kyiv, Ukraine
208 O.O. Galkin Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 03028, Kyiv, Ukraine
209 Vasyl’ Stus Donetsk National University, 21021, Vinnytsia, Ukraine
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...