Study of the evolution of nanopores and microstructural degradation of fine-grained YSZ–NiO(Ni) anode materials in a hydrogen sulfide containing atmosphere View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-13

AUTHORS

Bogdan Vasyliv, Volodymyr Kulyk, Zoia Duriagina, Taras Kovbasiuk, Volodymyr Vira, Ihor Lemishka

ABSTRACT

The formation of solid oxide fuel cell (SOFC) anode structure resistible against degradation in operating environments is a relevant task while improving SOFC models. This work is aimed at studying the effect of hydrogen sulfide content in a high-temperature (600 °C) hydrogenous atmosphere on the evolution of nanopores and microstructural degradation, as well as strength, microhardness, and crack growth resistance of a fine-grained YSZ–NiO(Ni) anode materials for SOFCs. To obtain the corresponding YSZ–NiO(Ni) cermet structure, specimens of the YSZ–NiO anode ceramics were reduced in Ar–5 vol% H2 mixture for 4 h at 600 °C under a pressure of 0.15 MPa. A part of reduced specimens was aged in “hydrogen sulfide in Ar–5 vol% H2 mixture” atmosphere for 4 h at 600 °C under a pressure of 0.1 MPa. The atmosphere contained 7 or 18 vol% H2S. After aging, the physical and mechanical behaviors of specimens were studied. The following investigation methods were utilized: strength test under three-point bending, Vickers microhardness test, fracture toughness test by indentation method, SEM, EDX, and STEM. It was revealed that the atmosphere containing up to 7 vol% H2S had a slight effect on the strength and electrical conductivity of the YSZ–NiO(Ni) cermet. In contrast to this, an increased content of hydrogen sulfide (18 vol% H2S) caused some changes in the YSZ–Ni cermet microstructure. As compared to the preconditioned cermet, strength of the aged cermet decreased by almost 30%. In contrast to this, microhardness and fracture toughness of the aged cermet were only lowered by about 10%. To explain this difference, several fracture micromechanisms were suggested: (1) the localization of stresses in the crack tip vicinity (so-called process zone) during indentation that promotes further crack growth until touching a “material–pore” interface where stress relaxation occurs causing crack retardation (the case of Vickers indentation test); (2) a decrease in the integral cross-section area due to pores in the material bulk when expanding ultimate stress zone that results in a sharp decrease in strength of the YSZ–NiO(Ni) cermet aged in a hydrogen sulfide containing atmosphere (the case of strength test). It was found that in the case of increased content of H2S (18 vol%) in a hydrogenous atmosphere, microstructure degradation due to the nanopores formation and weakening of the “zirconia–nickel” bonds occurs promoting low-energy intergranular fracture along boundaries of both the nickel and zirconia phase grains. More... »

PAGES

1-13

References to SciGraph publications

  • 1975-01. Microfracture beneath point indentations in brittle solids in JOURNAL OF MATERIALS SCIENCE
  • 2018-07-12. The peculiarities of light absorption and light emission in Cu-doped Y-stabilized ZrO2 nanopowders in APPLIED NANOSCIENCE
  • 2018-01. Effect of the Additive of Y2O3 on the Structure Formation and Properties of Composite Materials Based on AlN–SiC in JOURNAL OF SUPERHARD MATERIALS
  • 2019-09-06. Photocatalytic properties of zirconium oxide–zinc oxide nanoparticles synthesised using microwave irradiation in APPLIED NANOSCIENCE
  • 2021-05-08. Nanostructured AlCoFeCrVNi and AlCoFeCrVTi high-entropy alloys resulted from mechanical alloying and sintering in APPLIED NANOSCIENCE
  • 2017-04-08. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor in NANOSCALE RESEARCH LETTERS
  • 2019-06-06. Quantum molecular study on doping effect in titanium and vanadium clusters: their application to remove some chemical species in APPLIED NANOSCIENCE
  • 1998-03. Some features of formation of the structural strength of ceramic materials in MATERIALS SCIENCE
  • 2020-03-12. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water in APPLIED NANOSCIENCE
  • 2020-06-04. Electrophysical properties of hydrated porous dispersed system based on zirconia nanopowders in APPLIED NANOSCIENCE
  • 2021-01-14. Visible light photocatalytic degradation of methylene blue by hydrated titanium dioxide nanoparticles incorporated within rice straw in APPLIED NANOSCIENCE
  • 2020-06-02. Hydrothermal implement with supporting of semiconductor ZrO2 (ZO), Ag doped ZrO2 (AZO) nanomaterial and its astrophysical, UV photocatalytic employment on Rh6G dye in APPLIED NANOSCIENCE
  • 2020-10-08. Study of pulse electrodeposition parameters for nano YSZ-Ni coatings and its effect on tribological and corrosion characteristics in APPLIED NANOSCIENCE
  • 2019-03-01. Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles in APPLIED NANOSCIENCE
  • 2020-04-17. Influence of PbO phase content on structural and optical properties of PZT nanopowders in APPLIED NANOSCIENCE
  • 2002-09. Initiation of a Crack from the Edge of a Notch with Oblique Front in Specimens of Brittle Materials in MATERIALS SCIENCE
  • 2021-07. The Influence of the ZrO2 Solid Solution Amount on the Physicochemical Properties of Al2O3–ZrO2–Y2O3–CeO2 Powders in POWDER METALLURGY AND METAL CERAMICS
  • 2018-06-27. Effect of a Hydrogen Sulfide-Containing Atmosphere on the Physical and Mechanical Properties of Solid Oxide Fuel Cell Materials in NANOCHEMISTRY, BIOTECHNOLOGY, NANOMATERIALS, AND THEIR APPLICATIONS
  • 2014-05. Structural Transformations in the Nio-Containing Anode of Ceramic Fuel Cells in the Course of its Reduction and Oxidation in MATERIALS SCIENCE
  • 2019-08-02. Study of Structural Changes in a Nickel Oxide Containing Anode Material During Reduction and Oxidation at 600 °C in NANOCOMPOSITES, NANOSTRUCTURES, AND THEIR APPLICATIONS
  • 2017-09-05. Molecular Dynamics Simulations of the Formation Processes of Zinc Oxide Nanoclusters in Oxygen Environment in NANOPHYSICS, NANOMATERIALS, INTERFACE STUDIES, AND APPLICATIONS
  • 1982-01. Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios in JOURNAL OF MATERIALS SCIENCE LETTERS
  • 2017-02-17. The Peculiarities of Structure Formation and Properties of Zirconia-Based Nanocomposites with Addition of Al2O3 and NiO in NANOSCALE RESEARCH LETTERS
  • 1975-12. Equilibrium penny-like cracks in indentation fracture in JOURNAL OF MATERIALS SCIENCE
  • 2001-11. Effect of the Size and Form of Specimens on the Diagram of Growth Rates of Fatigue Cracks in MATERIALS SCIENCE
  • 2021-08-27. Synthesis of zirconia nanoparticles using Laurus nobilis for use as an antimicrobial agent in APPLIED NANOSCIENCE
  • 2016-02-16. Influence of Treatment Temperature on Microstructure and Properties of YSZ–NiO Anode Materials in NANOSCALE RESEARCH LETTERS
  • 2009-07. A procedure for the investigation of mechanical and physical properties of ceramics under the conditions of biaxial bending of a disk specimen according to the ring–ring scheme in MATERIALS SCIENCE
  • 2021-03-10. Study of the degradation of a fine-grained YSZ–NiO anode material during reduction in hydrogen and reoxidation in air in APPLIED NANOSCIENCE
  • 1996-09. Effect of the concentration of zirconium dioxide on the fracture resistance of Al2O3-ZrO2 ceramics in MATERIALS SCIENCE
  • 2019-02-26. Photodegradation of thiophene over ZrO2–SiO2 nanoparticles: impact of copper decoration on their photocatalytic activity in APPLIED NANOSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13204-022-02609-0

    DOI

    http://dx.doi.org/10.1007/s13204-022-02609-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150964000


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Hydrogen Technologies and Alternative Energy Materials, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova Str., 79060, Lviv, Ukraine", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Hydrogen Technologies and Alternative Energy Materials, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova Str., 79060, Lviv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasyliv", 
            "givenName": "Bogdan", 
            "id": "sg:person.01176045717.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176045717.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.10067.30", 
              "name": [
                "Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kulyk", 
            "givenName": "Volodymyr", 
            "id": "sg:person.011705063353.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011705063353.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Engineering, The John Paul II Catholic University of Lublin, 14 Rac\u0142awickie Al., 20-950, Lublin, Poland", 
              "id": "http://www.grid.ac/institutes/grid.37179.3b", 
              "name": [
                "Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine", 
                "Department of Materials Engineering, The John Paul II Catholic University of Lublin, 14 Rac\u0142awickie Al., 20-950, Lublin, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duriagina", 
            "givenName": "Zoia", 
            "id": "sg:person.012530230013.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012530230013.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Hydrogen Technologies and Alternative Energy Materials, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova Str., 79060, Lviv, Ukraine", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Hydrogen Technologies and Alternative Energy Materials, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova Str., 79060, Lviv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kovbasiuk", 
            "givenName": "Taras", 
            "id": "sg:person.013734526141.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734526141.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Strength of Materials and Structural Mechanics, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.10067.30", 
              "name": [
                "Department of Strength of Materials and Structural Mechanics, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vira", 
            "givenName": "Volodymyr", 
            "id": "sg:person.010211637617.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211637617.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.10067.30", 
              "name": [
                "Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lemishka", 
            "givenName": "Ihor", 
            "id": "sg:person.010242505213.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242505213.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00558793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010260530", 
              "https://doi.org/10.1007/bf00558793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11003-014-9677-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035042689", 
              "https://doi.org/10.1007/s11003-014-9677-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11003-010-9215-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037401941", 
              "https://doi.org/10.1007/s11003-010-9215-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-018-0839-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105495290", 
              "https://doi.org/10.1007/s13204-018-0839-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00557479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043798248", 
              "https://doi.org/10.1007/bf00557479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-019-00979-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112492484", 
              "https://doi.org/10.1007/s13204-019-00979-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-020-01453-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128166022", 
              "https://doi.org/10.1007/s13204-020-01453-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1063457618010021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101504379", 
              "https://doi.org/10.3103/s1063457618010021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s11671-016-1306-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009364417", 
              "https://doi.org/10.1186/s11671-016-1306-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-021-01768-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136295007", 
              "https://doi.org/10.1007/s13204-021-01768-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-020-01471-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128228517", 
              "https://doi.org/10.1007/s13204-020-01471-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-020-01313-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125612081", 
              "https://doi.org/10.1007/s13204-020-01313-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-17759-1_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120031333", 
              "https://doi.org/10.1007/978-3-030-17759-1_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00541038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025345389", 
              "https://doi.org/10.1007/bf00541038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11106-021-00222-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141302575", 
              "https://doi.org/10.1007/s11106-021-00222-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00724706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028923773", 
              "https://doi.org/10.1007/bf00724706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-019-00992-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112393038", 
              "https://doi.org/10.1007/s13204-019-00992-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s11671-017-2038-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084612296", 
              "https://doi.org/10.1186/s11671-017-2038-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024222709514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035282062", 
              "https://doi.org/10.1023/a:1024222709514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-021-01856-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137860071", 
              "https://doi.org/10.1007/s13204-021-01856-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-020-01390-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126754646", 
              "https://doi.org/10.1007/s13204-020-01390-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-019-01158-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120900030", 
              "https://doi.org/10.1007/s13204-019-01158-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02355530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001663379", 
              "https://doi.org/10.1007/bf02355530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-021-02041-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140702846", 
              "https://doi.org/10.1007/s13204-021-02041-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-020-01567-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131501799", 
              "https://doi.org/10.1007/s13204-020-01567-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s11671-017-1901-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083886434", 
              "https://doi.org/10.1186/s11671-017-1901-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015669913601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037377254", 
              "https://doi.org/10.1023/a:1015669913601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-56422-7_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091476410", 
              "https://doi.org/10.1007/978-3-319-56422-7_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-92567-7_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105154337", 
              "https://doi.org/10.1007/978-3-319-92567-7_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-020-01656-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134587719", 
              "https://doi.org/10.1007/s13204-020-01656-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-019-01072-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116839525", 
              "https://doi.org/10.1007/s13204-019-01072-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-09-13", 
        "datePublishedReg": "2022-09-13", 
        "description": "The formation of solid oxide fuel cell (SOFC) anode structure resistible against degradation in operating environments is a relevant task while improving SOFC models. This work is aimed at studying the effect of hydrogen sulfide content in a high-temperature (600\u00a0\u00b0C) hydrogenous atmosphere on the evolution of nanopores and microstructural degradation, as well as strength, microhardness, and crack growth resistance of a fine-grained YSZ\u2013NiO(Ni) anode materials for SOFCs. To obtain the corresponding YSZ\u2013NiO(Ni) cermet structure, specimens of the YSZ\u2013NiO anode ceramics were reduced in Ar\u20135\u00a0vol%\u00a0H2 mixture for 4\u00a0h at 600\u00a0\u00b0C under a pressure of 0.15\u00a0MPa. A part of reduced specimens was aged in \u201chydrogen sulfide in Ar\u20135 vol%\u00a0H2 mixture\u201d atmosphere for 4\u00a0h at 600\u00a0\u00b0C under a pressure of 0.1\u00a0MPa. The atmosphere contained 7 or 18\u00a0vol%\u00a0H2S. After aging, the physical and mechanical behaviors of specimens were studied. The following investigation methods were utilized: strength test under three-point bending, Vickers microhardness test, fracture toughness test by indentation method, SEM, EDX, and STEM. It was revealed that the atmosphere containing up to 7\u00a0vol%\u00a0H2S had a slight effect on the strength and electrical conductivity of the YSZ\u2013NiO(Ni) cermet. In contrast to this, an increased content of hydrogen sulfide (18\u00a0vol%\u00a0H2S) caused some changes in the YSZ\u2013Ni cermet microstructure. As compared to the preconditioned cermet, strength of the aged cermet decreased by almost 30%. In contrast to this, microhardness and fracture toughness of the aged cermet were only lowered by about 10%. To explain this difference, several fracture micromechanisms were suggested: (1) the localization of stresses in the crack tip vicinity (so-called process zone) during indentation that promotes further crack growth until touching a \u201cmaterial\u2013pore\u201d interface where stress relaxation occurs causing crack retardation (the case of Vickers indentation test); (2) a decrease in the integral cross-section area due to pores in the material bulk when expanding ultimate stress zone that results in a sharp decrease in strength of the YSZ\u2013NiO(Ni) cermet aged in a hydrogen sulfide containing atmosphere (the case of strength test). It was found that in the case of increased content of H2S (18\u00a0vol%) in a hydrogenous atmosphere, microstructure degradation due to the nanopores formation and weakening of the \u201czirconia\u2013nickel\u201d bonds occurs promoting low-energy intergranular fracture along boundaries of both the nickel and zirconia phase grains.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13204-022-02609-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1033811", 
            "issn": [
              "2190-5509", 
              "2190-5517"
            ], 
            "name": "Applied Nanoscience", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "microstructural degradation", 
          "anode materials", 
          "hydrogenous atmosphere", 
          "low-energy intergranular fracture", 
          "fracture toughness tests", 
          "crack tip vicinity", 
          "evolution of nanopores", 
          "three-point bending", 
          "Ar-5", 
          "H2 mixtures", 
          "content of H2", 
          "cermet microstructure", 
          "fracture micromechanisms", 
          "fracture toughness", 
          "SOFC model", 
          "toughness tests", 
          "intergranular fracture", 
          "hydrogen sulfide content", 
          "indentation method", 
          "tip vicinity", 
          "mechanical behavior", 
          "Vickers microhardness test", 
          "localization of stresses", 
          "growth resistance", 
          "anode structure", 
          "microstructure degradation", 
          "phase grains", 
          "crack retardation", 
          "cermet structure", 
          "cermets", 
          "material bulk", 
          "stress zone", 
          "hydrogen sulfide", 
          "YSZ", 
          "microhardness test", 
          "reduced specimens", 
          "stress relaxation", 
          "strength test", 
          "electrical conductivity", 
          "cross-section area", 
          "microhardness", 
          "nanopore formation", 
          "MPa", 
          "strength", 
          "nanopores", 
          "investigation methods", 
          "sulfide content", 
          "atmosphere", 
          "SOFC", 
          "toughness", 
          "materials", 
          "micromechanisms", 
          "ceramics", 
          "microstructure", 
          "degradation", 
          "H2", 
          "indentation", 
          "sulfide", 
          "conductivity", 
          "specimens", 
          "slight effect", 
          "bending", 
          "mixture", 
          "SEM", 
          "EDX", 
          "pores", 
          "pressure", 
          "nickel", 
          "interface", 
          "sharp decrease", 
          "test", 
          "structure", 
          "H2S.", 
          "grains", 
          "method", 
          "bulk", 
          "content", 
          "boundaries", 
          "fractures", 
          "formation", 
          "stress", 
          "vicinity", 
          "zone", 
          "resistance", 
          "behavior", 
          "effect", 
          "relevant tasks", 
          "evolution", 
          "work", 
          "weakening", 
          "decrease", 
          "model", 
          "relaxation", 
          "environment", 
          "area", 
          "part", 
          "growth", 
          "bonds", 
          "localization", 
          "cases", 
          "changes", 
          "study", 
          "task", 
          "contrast", 
          "differences", 
          "retardation", 
          "stem"
        ], 
        "name": "Study of the evolution of nanopores and microstructural degradation of fine-grained YSZ\u2013NiO(Ni) anode materials in a hydrogen sulfide containing atmosphere", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150964000"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13204-022-02609-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13204-022-02609-0", 
          "https://app.dimensions.ai/details/publication/pub.1150964000"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_951.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13204-022-02609-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02609-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02609-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02609-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13204-022-02609-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    326 TRIPLES      21 PREDICATES      160 URIs      121 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13204-022-02609-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nf550b8c18de24c0ab88748b10949257a
    4 schema:citation sg:pub.10.1007/978-3-030-17759-1_42
    5 sg:pub.10.1007/978-3-319-56422-7_11
    6 sg:pub.10.1007/978-3-319-92567-7_30
    7 sg:pub.10.1007/bf00541038
    8 sg:pub.10.1007/bf00557479
    9 sg:pub.10.1007/bf00558793
    10 sg:pub.10.1007/bf00724706
    11 sg:pub.10.1007/bf02355530
    12 sg:pub.10.1007/s11003-010-9215-2
    13 sg:pub.10.1007/s11003-014-9677-8
    14 sg:pub.10.1007/s11106-021-00222-4
    15 sg:pub.10.1007/s13204-018-0839-0
    16 sg:pub.10.1007/s13204-019-00979-6
    17 sg:pub.10.1007/s13204-019-00992-9
    18 sg:pub.10.1007/s13204-019-01072-8
    19 sg:pub.10.1007/s13204-019-01158-3
    20 sg:pub.10.1007/s13204-020-01313-1
    21 sg:pub.10.1007/s13204-020-01390-2
    22 sg:pub.10.1007/s13204-020-01453-4
    23 sg:pub.10.1007/s13204-020-01471-2
    24 sg:pub.10.1007/s13204-020-01567-9
    25 sg:pub.10.1007/s13204-020-01656-9
    26 sg:pub.10.1007/s13204-021-01768-w
    27 sg:pub.10.1007/s13204-021-01856-x
    28 sg:pub.10.1007/s13204-021-02041-w
    29 sg:pub.10.1023/a:1015669913601
    30 sg:pub.10.1023/a:1024222709514
    31 sg:pub.10.1186/s11671-016-1306-z
    32 sg:pub.10.1186/s11671-017-1901-7
    33 sg:pub.10.1186/s11671-017-2038-4
    34 sg:pub.10.3103/s1063457618010021
    35 schema:datePublished 2022-09-13
    36 schema:datePublishedReg 2022-09-13
    37 schema:description The formation of solid oxide fuel cell (SOFC) anode structure resistible against degradation in operating environments is a relevant task while improving SOFC models. This work is aimed at studying the effect of hydrogen sulfide content in a high-temperature (600 °C) hydrogenous atmosphere on the evolution of nanopores and microstructural degradation, as well as strength, microhardness, and crack growth resistance of a fine-grained YSZ–NiO(Ni) anode materials for SOFCs. To obtain the corresponding YSZ–NiO(Ni) cermet structure, specimens of the YSZ–NiO anode ceramics were reduced in Ar–5 vol% H2 mixture for 4 h at 600 °C under a pressure of 0.15 MPa. A part of reduced specimens was aged in “hydrogen sulfide in Ar–5 vol% H2 mixture” atmosphere for 4 h at 600 °C under a pressure of 0.1 MPa. The atmosphere contained 7 or 18 vol% H2S. After aging, the physical and mechanical behaviors of specimens were studied. The following investigation methods were utilized: strength test under three-point bending, Vickers microhardness test, fracture toughness test by indentation method, SEM, EDX, and STEM. It was revealed that the atmosphere containing up to 7 vol% H2S had a slight effect on the strength and electrical conductivity of the YSZ–NiO(Ni) cermet. In contrast to this, an increased content of hydrogen sulfide (18 vol% H2S) caused some changes in the YSZ–Ni cermet microstructure. As compared to the preconditioned cermet, strength of the aged cermet decreased by almost 30%. In contrast to this, microhardness and fracture toughness of the aged cermet were only lowered by about 10%. To explain this difference, several fracture micromechanisms were suggested: (1) the localization of stresses in the crack tip vicinity (so-called process zone) during indentation that promotes further crack growth until touching a “material–pore” interface where stress relaxation occurs causing crack retardation (the case of Vickers indentation test); (2) a decrease in the integral cross-section area due to pores in the material bulk when expanding ultimate stress zone that results in a sharp decrease in strength of the YSZ–NiO(Ni) cermet aged in a hydrogen sulfide containing atmosphere (the case of strength test). It was found that in the case of increased content of H2S (18 vol%) in a hydrogenous atmosphere, microstructure degradation due to the nanopores formation and weakening of the “zirconia–nickel” bonds occurs promoting low-energy intergranular fracture along boundaries of both the nickel and zirconia phase grains.
    38 schema:genre article
    39 schema:isAccessibleForFree false
    40 schema:isPartOf sg:journal.1033811
    41 schema:keywords Ar-5
    42 EDX
    43 H2
    44 H2 mixtures
    45 H2S.
    46 MPa
    47 SEM
    48 SOFC
    49 SOFC model
    50 Vickers microhardness test
    51 YSZ
    52 anode materials
    53 anode structure
    54 area
    55 atmosphere
    56 behavior
    57 bending
    58 bonds
    59 boundaries
    60 bulk
    61 cases
    62 ceramics
    63 cermet microstructure
    64 cermet structure
    65 cermets
    66 changes
    67 conductivity
    68 content
    69 content of H2
    70 contrast
    71 crack retardation
    72 crack tip vicinity
    73 cross-section area
    74 decrease
    75 degradation
    76 differences
    77 effect
    78 electrical conductivity
    79 environment
    80 evolution
    81 evolution of nanopores
    82 formation
    83 fracture micromechanisms
    84 fracture toughness
    85 fracture toughness tests
    86 fractures
    87 grains
    88 growth
    89 growth resistance
    90 hydrogen sulfide
    91 hydrogen sulfide content
    92 hydrogenous atmosphere
    93 indentation
    94 indentation method
    95 interface
    96 intergranular fracture
    97 investigation methods
    98 localization
    99 localization of stresses
    100 low-energy intergranular fracture
    101 material bulk
    102 materials
    103 mechanical behavior
    104 method
    105 microhardness
    106 microhardness test
    107 micromechanisms
    108 microstructural degradation
    109 microstructure
    110 microstructure degradation
    111 mixture
    112 model
    113 nanopore formation
    114 nanopores
    115 nickel
    116 part
    117 phase grains
    118 pores
    119 pressure
    120 reduced specimens
    121 relaxation
    122 relevant tasks
    123 resistance
    124 retardation
    125 sharp decrease
    126 slight effect
    127 specimens
    128 stem
    129 strength
    130 strength test
    131 stress
    132 stress relaxation
    133 stress zone
    134 structure
    135 study
    136 sulfide
    137 sulfide content
    138 task
    139 test
    140 three-point bending
    141 tip vicinity
    142 toughness
    143 toughness tests
    144 vicinity
    145 weakening
    146 work
    147 zone
    148 schema:name Study of the evolution of nanopores and microstructural degradation of fine-grained YSZ–NiO(Ni) anode materials in a hydrogen sulfide containing atmosphere
    149 schema:pagination 1-13
    150 schema:productId N913a6f4c4f2446bdb61d7f75983aa6c3
    151 Nce7c9324af70432d9cf1f3d7c3cf2969
    152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150964000
    153 https://doi.org/10.1007/s13204-022-02609-0
    154 schema:sdDatePublished 2022-12-01T06:44
    155 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    156 schema:sdPublisher N6f3ad7ad3b9d45d5837794f560d1c32b
    157 schema:url https://doi.org/10.1007/s13204-022-02609-0
    158 sgo:license sg:explorer/license/
    159 sgo:sdDataset articles
    160 rdf:type schema:ScholarlyArticle
    161 N03acd053491d46c8a04759a3ed0376da rdf:first sg:person.012530230013.49
    162 rdf:rest Nb399f328a33a4307a1360b3a91d680a8
    163 N6f3ad7ad3b9d45d5837794f560d1c32b schema:name Springer Nature - SN SciGraph project
    164 rdf:type schema:Organization
    165 N7dd242a3b16d44b19858f731cd51e77d rdf:first sg:person.010211637617.27
    166 rdf:rest Nc6127601e64741dd8a02693e5c2981d8
    167 N913a6f4c4f2446bdb61d7f75983aa6c3 schema:name doi
    168 schema:value 10.1007/s13204-022-02609-0
    169 rdf:type schema:PropertyValue
    170 Nb28c66dd5c674b5dae2af8d8cdd5ac79 rdf:first sg:person.011705063353.30
    171 rdf:rest N03acd053491d46c8a04759a3ed0376da
    172 Nb399f328a33a4307a1360b3a91d680a8 rdf:first sg:person.013734526141.83
    173 rdf:rest N7dd242a3b16d44b19858f731cd51e77d
    174 Nc6127601e64741dd8a02693e5c2981d8 rdf:first sg:person.010242505213.34
    175 rdf:rest rdf:nil
    176 Nce7c9324af70432d9cf1f3d7c3cf2969 schema:name dimensions_id
    177 schema:value pub.1150964000
    178 rdf:type schema:PropertyValue
    179 Nf550b8c18de24c0ab88748b10949257a rdf:first sg:person.01176045717.18
    180 rdf:rest Nb28c66dd5c674b5dae2af8d8cdd5ac79
    181 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Engineering
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Materials Engineering
    186 rdf:type schema:DefinedTerm
    187 sg:journal.1033811 schema:issn 2190-5509
    188 2190-5517
    189 schema:name Applied Nanoscience
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.010211637617.27 schema:affiliation grid-institutes:grid.10067.30
    193 schema:familyName Vira
    194 schema:givenName Volodymyr
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211637617.27
    196 rdf:type schema:Person
    197 sg:person.010242505213.34 schema:affiliation grid-institutes:grid.10067.30
    198 schema:familyName Lemishka
    199 schema:givenName Ihor
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242505213.34
    201 rdf:type schema:Person
    202 sg:person.011705063353.30 schema:affiliation grid-institutes:grid.10067.30
    203 schema:familyName Kulyk
    204 schema:givenName Volodymyr
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011705063353.30
    206 rdf:type schema:Person
    207 sg:person.01176045717.18 schema:affiliation grid-institutes:None
    208 schema:familyName Vasyliv
    209 schema:givenName Bogdan
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176045717.18
    211 rdf:type schema:Person
    212 sg:person.012530230013.49 schema:affiliation grid-institutes:grid.37179.3b
    213 schema:familyName Duriagina
    214 schema:givenName Zoia
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012530230013.49
    216 rdf:type schema:Person
    217 sg:person.013734526141.83 schema:affiliation grid-institutes:None
    218 schema:familyName Kovbasiuk
    219 schema:givenName Taras
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734526141.83
    221 rdf:type schema:Person
    222 sg:pub.10.1007/978-3-030-17759-1_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120031333
    223 https://doi.org/10.1007/978-3-030-17759-1_42
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/978-3-319-56422-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091476410
    226 https://doi.org/10.1007/978-3-319-56422-7_11
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/978-3-319-92567-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105154337
    229 https://doi.org/10.1007/978-3-319-92567-7_30
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/bf00541038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345389
    232 https://doi.org/10.1007/bf00541038
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/bf00557479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043798248
    235 https://doi.org/10.1007/bf00557479
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/bf00558793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010260530
    238 https://doi.org/10.1007/bf00558793
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/bf00724706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028923773
    241 https://doi.org/10.1007/bf00724706
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/bf02355530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001663379
    244 https://doi.org/10.1007/bf02355530
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s11003-010-9215-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037401941
    247 https://doi.org/10.1007/s11003-010-9215-2
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s11003-014-9677-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035042689
    250 https://doi.org/10.1007/s11003-014-9677-8
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s11106-021-00222-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141302575
    253 https://doi.org/10.1007/s11106-021-00222-4
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s13204-018-0839-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105495290
    256 https://doi.org/10.1007/s13204-018-0839-0
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s13204-019-00979-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112492484
    259 https://doi.org/10.1007/s13204-019-00979-6
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s13204-019-00992-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112393038
    262 https://doi.org/10.1007/s13204-019-00992-9
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s13204-019-01072-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116839525
    265 https://doi.org/10.1007/s13204-019-01072-8
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s13204-019-01158-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120900030
    268 https://doi.org/10.1007/s13204-019-01158-3
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s13204-020-01313-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125612081
    271 https://doi.org/10.1007/s13204-020-01313-1
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s13204-020-01390-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126754646
    274 https://doi.org/10.1007/s13204-020-01390-2
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s13204-020-01453-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128166022
    277 https://doi.org/10.1007/s13204-020-01453-4
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s13204-020-01471-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128228517
    280 https://doi.org/10.1007/s13204-020-01471-2
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s13204-020-01567-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131501799
    283 https://doi.org/10.1007/s13204-020-01567-9
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s13204-020-01656-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134587719
    286 https://doi.org/10.1007/s13204-020-01656-9
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s13204-021-01768-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1136295007
    289 https://doi.org/10.1007/s13204-021-01768-w
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/s13204-021-01856-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1137860071
    292 https://doi.org/10.1007/s13204-021-01856-x
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s13204-021-02041-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1140702846
    295 https://doi.org/10.1007/s13204-021-02041-w
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1023/a:1015669913601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037377254
    298 https://doi.org/10.1023/a:1015669913601
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1023/a:1024222709514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035282062
    301 https://doi.org/10.1023/a:1024222709514
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/s11671-016-1306-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009364417
    304 https://doi.org/10.1186/s11671-016-1306-z
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/s11671-017-1901-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083886434
    307 https://doi.org/10.1186/s11671-017-1901-7
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/s11671-017-2038-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084612296
    310 https://doi.org/10.1186/s11671-017-2038-4
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.3103/s1063457618010021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101504379
    313 https://doi.org/10.3103/s1063457618010021
    314 rdf:type schema:CreativeWork
    315 grid-institutes:None schema:alternateName Department of Hydrogen Technologies and Alternative Energy Materials, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova Str., 79060, Lviv, Ukraine
    316 schema:name Department of Hydrogen Technologies and Alternative Energy Materials, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova Str., 79060, Lviv, Ukraine
    317 rdf:type schema:Organization
    318 grid-institutes:grid.10067.30 schema:alternateName Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine
    319 Department of Strength of Materials and Structural Mechanics, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine
    320 schema:name Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine
    321 Department of Strength of Materials and Structural Mechanics, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine
    322 rdf:type schema:Organization
    323 grid-institutes:grid.37179.3b schema:alternateName Department of Materials Engineering, The John Paul II Catholic University of Lublin, 14 Racławickie Al., 20-950, Lublin, Poland
    324 schema:name Department of Materials Engineering, The John Paul II Catholic University of Lublin, 14 Racławickie Al., 20-950, Lublin, Poland
    325 Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S.Bandera Str., 79013, Lviv, Ukraine
    326 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...