Synthesis and magnetic induction heating properties of Gd-substituted Mg–Zn ferrite nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-19

AUTHORS

Fumie Hirosawa, Tomohiro Iwasaki, Satoru Watano

ABSTRACT

Gadolinium-substituted magnesium–zinc ferrite (MgxZn1−xGdyFe2−yO4) nanoparticles with different metal compositions for x between 0 and 1 and y between 0 and 0.06 were synthesized via coprecipitation of metal hydroxides, followed by calcination. Their crystal structure was characterized via X-ray diffraction analysis, confirming that the Gd-substituted Mg–Zn ferrite samples had a single-phase spinel structure. The metal composition significantly affected the crystal structure, including the lattice parameters and crystallite size. Scanning electron microscopy (SEM) showed that the ferrite samples had a diameter of approximately 50–200 nm. Furthermore, the temperature rise in an alternating magnetic field was measured, and the magnetic induction heating properties were evaluated using the specific absorption rate (SAR) determined from the temperature profile. The SAR significantly varied depending on the compositions of x and y. When x = 0.5 and y = 0.02, the SAR was found to be at maximum. This reveals that the compositions can control the magnetic induction heating properties. The results suggest that Gd-substituted Mg–Zn ferrite nanoparticles are promising candidates for magnetic hyperthermia applications. More... »

PAGES

209-214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13204-017-0566-y

DOI

http://dx.doi.org/10.1007/s13204-017-0566-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084964427


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261455.1", 
          "name": [
            "Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirosawa", 
        "givenName": "Fumie", 
        "id": "sg:person.010342401415.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010342401415.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261455.1", 
          "name": [
            "Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwasaki", 
        "givenName": "Tomohiro", 
        "id": "sg:person.016544352104.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016544352104.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261455.1", 
          "name": [
            "Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watano", 
        "givenName": "Satoru", 
        "id": "sg:person.01315512522.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315512522.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-017-5347-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083910630", 
          "https://doi.org/10.1007/s11664-017-5347-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-012-0827-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034583686", 
          "https://doi.org/10.1007/s11051-012-0827-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00269-005-0003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879590", 
          "https://doi.org/10.1007/s00269-005-0003-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-011-0123-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042442889", 
          "https://doi.org/10.1007/s12194-011-0123-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-19", 
    "datePublishedReg": "2017-04-19", 
    "description": "Gadolinium-substituted magnesium\u2013zinc ferrite (MgxZn1\u2212xGdyFe2\u2212yO4) nanoparticles with different metal compositions for x between 0 and 1 and y between 0 and 0.06 were synthesized via coprecipitation of metal hydroxides, followed by calcination. Their crystal structure was characterized via X-ray diffraction analysis, confirming that the Gd-substituted Mg\u2013Zn ferrite samples had a single-phase spinel structure. The metal composition significantly affected the crystal structure, including the lattice parameters and crystallite size. Scanning electron microscopy (SEM) showed that the ferrite samples had a diameter of approximately 50\u2013200\u00a0nm. Furthermore, the temperature rise in an alternating magnetic field was measured, and the magnetic induction heating properties were evaluated using the specific absorption rate (SAR) determined from the temperature profile. The SAR significantly varied depending on the compositions of x and y. When x\u00a0=\u00a00.5 and y\u00a0=\u00a00.02, the SAR was found to be at maximum. This reveals that the compositions can control the magnetic induction heating properties. The results suggest that Gd-substituted Mg\u2013Zn ferrite nanoparticles are promising candidates for magnetic hyperthermia applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13204-017-0566-y", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5865766", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033811", 
        "issn": [
          "2190-5509", 
          "2190-5517"
        ], 
        "name": "Applied Nanoscience", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "ferrite nanoparticles", 
      "induction heating properties", 
      "Mg\u2013Zn ferrite nanoparticles", 
      "crystal structure", 
      "X-ray diffraction analysis", 
      "metal composition", 
      "different metal compositions", 
      "ferrite samples", 
      "single-phase spinel structure", 
      "magnetic hyperthermia applications", 
      "heating properties", 
      "metal hydroxides", 
      "spinel structure", 
      "diffraction analysis", 
      "nanoparticles", 
      "crystallite size", 
      "hyperthermia applications", 
      "properties of Gd", 
      "electron microscopy", 
      "lattice parameters", 
      "Gd", 
      "properties", 
      "coprecipitation", 
      "calcination", 
      "structure", 
      "composition", 
      "hydroxide", 
      "synthesis", 
      "microscopy", 
      "absorption rate", 
      "specific absorption rate", 
      "samples", 
      "temperature", 
      "candidates", 
      "applications", 
      "diameter", 
      "size", 
      "maximum", 
      "magnetic field", 
      "parameters", 
      "analysis", 
      "field", 
      "profile", 
      "rate", 
      "results", 
      "temperature profiles", 
      "magnetic induction", 
      "induction"
    ], 
    "name": "Synthesis and magnetic induction heating properties of Gd-substituted Mg\u2013Zn ferrite nanoparticles", 
    "pagination": "209-214", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084964427"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13204-017-0566-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13204-017-0566-y", 
      "https://app.dimensions.ai/details/publication/pub.1084964427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13204-017-0566-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13204-017-0566-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13204-017-0566-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13204-017-0566-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13204-017-0566-y'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      78 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13204-017-0566-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author N6fba313c4a7f447e8dfcad8ce457b062
6 schema:citation sg:pub.10.1007/s00269-005-0003-8
7 sg:pub.10.1007/s11051-012-0827-3
8 sg:pub.10.1007/s11664-017-5347-6
9 sg:pub.10.1007/s12194-011-0123-4
10 schema:datePublished 2017-04-19
11 schema:datePublishedReg 2017-04-19
12 schema:description Gadolinium-substituted magnesium–zinc ferrite (MgxZn1−xGdyFe2−yO4) nanoparticles with different metal compositions for x between 0 and 1 and y between 0 and 0.06 were synthesized via coprecipitation of metal hydroxides, followed by calcination. Their crystal structure was characterized via X-ray diffraction analysis, confirming that the Gd-substituted Mg–Zn ferrite samples had a single-phase spinel structure. The metal composition significantly affected the crystal structure, including the lattice parameters and crystallite size. Scanning electron microscopy (SEM) showed that the ferrite samples had a diameter of approximately 50–200 nm. Furthermore, the temperature rise in an alternating magnetic field was measured, and the magnetic induction heating properties were evaluated using the specific absorption rate (SAR) determined from the temperature profile. The SAR significantly varied depending on the compositions of x and y. When x = 0.5 and y = 0.02, the SAR was found to be at maximum. This reveals that the compositions can control the magnetic induction heating properties. The results suggest that Gd-substituted Mg–Zn ferrite nanoparticles are promising candidates for magnetic hyperthermia applications.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N61402f88bed0472fb6fd88385fb6ff6d
16 Nfba9b12eb12f4c28808075d24449215b
17 sg:journal.1033811
18 schema:keywords Gd
19 Mg–Zn ferrite nanoparticles
20 X-ray diffraction analysis
21 absorption rate
22 analysis
23 applications
24 calcination
25 candidates
26 composition
27 coprecipitation
28 crystal structure
29 crystallite size
30 diameter
31 different metal compositions
32 diffraction analysis
33 electron microscopy
34 ferrite nanoparticles
35 ferrite samples
36 field
37 heating properties
38 hydroxide
39 hyperthermia applications
40 induction
41 induction heating properties
42 lattice parameters
43 magnetic field
44 magnetic hyperthermia applications
45 magnetic induction
46 maximum
47 metal composition
48 metal hydroxides
49 microscopy
50 nanoparticles
51 parameters
52 profile
53 properties
54 properties of Gd
55 rate
56 results
57 samples
58 single-phase spinel structure
59 size
60 specific absorption rate
61 spinel structure
62 structure
63 synthesis
64 temperature
65 temperature profiles
66 schema:name Synthesis and magnetic induction heating properties of Gd-substituted Mg–Zn ferrite nanoparticles
67 schema:pagination 209-214
68 schema:productId N72ad053904824e85ac3f2957e74969c6
69 N77f7bc48a37e405399d6a71d656c403a
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084964427
71 https://doi.org/10.1007/s13204-017-0566-y
72 schema:sdDatePublished 2022-12-01T06:36
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N49914d137b31428daf6ef6c7215182bf
75 schema:url https://doi.org/10.1007/s13204-017-0566-y
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N392780c2d01d4464bb573e96623613ce rdf:first sg:person.016544352104.83
80 rdf:rest Nf00e7b5d72b94365b32e7641413d0714
81 N49914d137b31428daf6ef6c7215182bf schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N61402f88bed0472fb6fd88385fb6ff6d schema:issueNumber 5
84 rdf:type schema:PublicationIssue
85 N6fba313c4a7f447e8dfcad8ce457b062 rdf:first sg:person.010342401415.70
86 rdf:rest N392780c2d01d4464bb573e96623613ce
87 N72ad053904824e85ac3f2957e74969c6 schema:name dimensions_id
88 schema:value pub.1084964427
89 rdf:type schema:PropertyValue
90 N77f7bc48a37e405399d6a71d656c403a schema:name doi
91 schema:value 10.1007/s13204-017-0566-y
92 rdf:type schema:PropertyValue
93 Nf00e7b5d72b94365b32e7641413d0714 rdf:first sg:person.01315512522.17
94 rdf:rest rdf:nil
95 Nfba9b12eb12f4c28808075d24449215b schema:volumeNumber 7
96 rdf:type schema:PublicationVolume
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 sg:grant.5865766 http://pending.schema.org/fundedItem sg:pub.10.1007/s13204-017-0566-y
110 rdf:type schema:MonetaryGrant
111 sg:journal.1033811 schema:issn 2190-5509
112 2190-5517
113 schema:name Applied Nanoscience
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.010342401415.70 schema:affiliation grid-institutes:grid.261455.1
117 schema:familyName Hirosawa
118 schema:givenName Fumie
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010342401415.70
120 rdf:type schema:Person
121 sg:person.01315512522.17 schema:affiliation grid-institutes:grid.261455.1
122 schema:familyName Watano
123 schema:givenName Satoru
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315512522.17
125 rdf:type schema:Person
126 sg:person.016544352104.83 schema:affiliation grid-institutes:grid.261455.1
127 schema:familyName Iwasaki
128 schema:givenName Tomohiro
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016544352104.83
130 rdf:type schema:Person
131 sg:pub.10.1007/s00269-005-0003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879590
132 https://doi.org/10.1007/s00269-005-0003-8
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11051-012-0827-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034583686
135 https://doi.org/10.1007/s11051-012-0827-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11664-017-5347-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083910630
138 https://doi.org/10.1007/s11664-017-5347-6
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s12194-011-0123-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042442889
141 https://doi.org/10.1007/s12194-011-0123-4
142 rdf:type schema:CreativeWork
143 grid-institutes:grid.261455.1 schema:alternateName Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan
144 schema:name Department of Chemical Engineering, Osaka Prefecture University, 599-8531, Sakai, Osaka, Japan
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...