Ontology type: schema:ScholarlyArticle
2012-04-24
AUTHORSMohamed Bahgat, Ahmed A. Farghali, Ahmed F. Moustafa, Mohamed H. Khedr, Mohassab Y. Mohassab-Ahmed
ABSTRACTThis work was carried out as an integral part of a project aiming to improve the catalytic, electrical, magnetic, and mechanical properties of synthesized TiO2NTs filled with metal ferrites. TiO2 nanotubes in the anatase-phase (TiO2NTs) were prepared using a hydrothermal method followed by ion exchange and phase transformation. The obtained TiO2NTs were filled with NiFe2O4 quantum dots (QDs) and then reacted at 600 °C in a reducing atmosphere to produce TiO2NTs filled with Ni–Fe nanoalloy. The effect of the TiO2NTs’ coating on the dissolution rate of Ni–Fe nanoalloy in 0.5 M HCl solution was monitored chemically using a weight-loss technique that was performed at different temperatures. The TiO2NTs’ coating exhibited high protective performance and amazing corrosion resistance. The magnetic properties of the TiO2NTs filled with NiFe2O4 QDs and Ni–Fe nanoalloy compacts were analyzed by a vibrating sample magnetometer. The electrical conductivity-temperature dependence of anatase TiO2NTs, anatase TiO2NTs filled with NiFe2O4 quantum dots, anatase TiO2NTs filled with Ni–Fe nanoalloy, and NiFe2O4 was measured in the temperature range of 25–850 °C. The conductivity increased with temperature, indicating the semiconductor-like nature of the sample. During cooling, the conductivity retains values higher than that obtained during heating. More... »
PAGES241-249
http://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8
DOIhttp://dx.doi.org/10.1007/s13204-012-0122-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018563903
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt",
"id": "http://www.grid.ac/institutes/grid.470969.5",
"name": [
"Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt"
],
"type": "Organization"
},
"familyName": "Bahgat",
"givenName": "Mohamed",
"id": "sg:person.011313225416.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313225416.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt"
],
"type": "Organization"
},
"familyName": "Farghali",
"givenName": "Ahmed A.",
"id": "sg:person.012502366765.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502366765.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt"
],
"type": "Organization"
},
"familyName": "Moustafa",
"givenName": "Ahmed F.",
"id": "sg:person.015125715043.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125715043.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt"
],
"type": "Organization"
},
"familyName": "Khedr",
"givenName": "Mohamed H.",
"id": "sg:person.015333711045.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333711045.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA",
"id": "http://www.grid.ac/institutes/grid.223827.e",
"name": [
"Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA"
],
"type": "Organization"
},
"familyName": "Mohassab-Ahmed",
"givenName": "Mohassab Y.",
"id": "sg:person.016372107033.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372107033.38"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1140/epjb/e2006-00081-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037152799",
"https://doi.org/10.1140/epjb/e2006-00081-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1016073606681",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021803584",
"https://doi.org/10.1023/a:1016073606681"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10854-008-9716-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019271821",
"https://doi.org/10.1007/s10854-008-9716-z"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-04-24",
"datePublishedReg": "2012-04-24",
"description": "This work was carried out as an integral part of a project aiming to improve the catalytic, electrical, magnetic, and mechanical properties of synthesized TiO2NTs filled with metal ferrites. TiO2 nanotubes in the anatase-phase (TiO2NTs) were prepared using a hydrothermal method followed by ion exchange and phase transformation. The obtained TiO2NTs were filled with NiFe2O4 quantum dots (QDs) and then reacted at 600\u00a0\u00b0C in a reducing atmosphere to produce TiO2NTs filled with Ni\u2013Fe nanoalloy. The effect of the TiO2NTs\u2019 coating on the dissolution rate of Ni\u2013Fe nanoalloy in 0.5\u00a0M HCl solution was monitored chemically using a weight-loss technique that was performed at different temperatures. The TiO2NTs\u2019 coating exhibited high protective performance and amazing corrosion resistance. The magnetic properties of the TiO2NTs filled with NiFe2O4 QDs and Ni\u2013Fe nanoalloy compacts were analyzed by a vibrating sample magnetometer. The electrical conductivity-temperature dependence of anatase TiO2NTs, anatase TiO2NTs filled with NiFe2O4 quantum dots, anatase TiO2NTs filled with Ni\u2013Fe nanoalloy, and NiFe2O4 was measured in the temperature range of 25\u2013850\u00a0\u00b0C. The conductivity increased with temperature, indicating the semiconductor-like nature of the sample. During cooling, the conductivity retains values higher than that obtained during heating.",
"genre": "article",
"id": "sg:pub.10.1007/s13204-012-0122-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1033811",
"issn": [
"2190-5509",
"2190-5517"
],
"name": "Applied Nanoscience",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"electrical conductivity temperature dependence",
"corrosion resistance properties",
"high protective performance",
"semiconductor-like nature",
"corrosion resistance",
"mechanical properties",
"protective performance",
"resistance properties",
"phase transformation",
"weight loss technique",
"metal ferrites",
"conductivity temperature dependence",
"TiO2NTs",
"sample magnetometer",
"quantum dots",
"HCl solution",
"hydrothermal method",
"temperature range",
"different temperatures",
"dissolution rate",
"conductivity",
"TiO2",
"magnetic properties",
"ion exchange",
"temperature",
"properties",
"nanoalloys",
"coatings",
"ferrite",
"NiFe2O4",
"compacts",
"heating",
"cooling",
"magnetometer",
"dots",
"performance",
"atmosphere",
"solution",
"resistance",
"technique",
"range",
"method",
"dependence",
"work",
"integral part",
"values",
"transformation",
"effect",
"rate",
"project",
"samples",
"part",
"nature",
"exchange"
],
"name": "Electrical, magnetic, and corrosion resistance properties of TiO2 nanotubes filled with NiFe2O4 quantum dots and Ni\u2013Fe nanoalloy",
"pagination": "241-249",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018563903"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13204-012-0122-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13204-012-0122-8",
"https://app.dimensions.ai/details/publication/pub.1018563903"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_571.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13204-012-0122-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'
This table displays all metadata directly associated to this object as RDF triples.
158 TRIPLES
22 PREDICATES
82 URIs
71 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s13204-012-0122-8 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Nc55403323e7f4e9fa6ea69fa0e1f8fc1 |
4 | ″ | schema:citation | sg:pub.10.1007/s10854-008-9716-z |
5 | ″ | ″ | sg:pub.10.1023/a:1016073606681 |
6 | ″ | ″ | sg:pub.10.1140/epjb/e2006-00081-5 |
7 | ″ | schema:datePublished | 2012-04-24 |
8 | ″ | schema:datePublishedReg | 2012-04-24 |
9 | ″ | schema:description | This work was carried out as an integral part of a project aiming to improve the catalytic, electrical, magnetic, and mechanical properties of synthesized TiO2NTs filled with metal ferrites. TiO2 nanotubes in the anatase-phase (TiO2NTs) were prepared using a hydrothermal method followed by ion exchange and phase transformation. The obtained TiO2NTs were filled with NiFe2O4 quantum dots (QDs) and then reacted at 600 °C in a reducing atmosphere to produce TiO2NTs filled with Ni–Fe nanoalloy. The effect of the TiO2NTs’ coating on the dissolution rate of Ni–Fe nanoalloy in 0.5 M HCl solution was monitored chemically using a weight-loss technique that was performed at different temperatures. The TiO2NTs’ coating exhibited high protective performance and amazing corrosion resistance. The magnetic properties of the TiO2NTs filled with NiFe2O4 QDs and Ni–Fe nanoalloy compacts were analyzed by a vibrating sample magnetometer. The electrical conductivity-temperature dependence of anatase TiO2NTs, anatase TiO2NTs filled with NiFe2O4 quantum dots, anatase TiO2NTs filled with Ni–Fe nanoalloy, and NiFe2O4 was measured in the temperature range of 25–850 °C. The conductivity increased with temperature, indicating the semiconductor-like nature of the sample. During cooling, the conductivity retains values higher than that obtained during heating. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N28c4c37fa82a42c592c8400ffb314564 |
14 | ″ | ″ | Nc632302a25fb4ff48e687d17ad627672 |
15 | ″ | ″ | sg:journal.1033811 |
16 | ″ | schema:keywords | HCl solution |
17 | ″ | ″ | NiFe2O4 |
18 | ″ | ″ | TiO2 |
19 | ″ | ″ | TiO2NTs |
20 | ″ | ″ | atmosphere |
21 | ″ | ″ | coatings |
22 | ″ | ″ | compacts |
23 | ″ | ″ | conductivity |
24 | ″ | ″ | conductivity temperature dependence |
25 | ″ | ″ | cooling |
26 | ″ | ″ | corrosion resistance |
27 | ″ | ″ | corrosion resistance properties |
28 | ″ | ″ | dependence |
29 | ″ | ″ | different temperatures |
30 | ″ | ″ | dissolution rate |
31 | ″ | ″ | dots |
32 | ″ | ″ | effect |
33 | ″ | ″ | electrical conductivity temperature dependence |
34 | ″ | ″ | exchange |
35 | ″ | ″ | ferrite |
36 | ″ | ″ | heating |
37 | ″ | ″ | high protective performance |
38 | ″ | ″ | hydrothermal method |
39 | ″ | ″ | integral part |
40 | ″ | ″ | ion exchange |
41 | ″ | ″ | magnetic properties |
42 | ″ | ″ | magnetometer |
43 | ″ | ″ | mechanical properties |
44 | ″ | ″ | metal ferrites |
45 | ″ | ″ | method |
46 | ″ | ″ | nanoalloys |
47 | ″ | ″ | nature |
48 | ″ | ″ | part |
49 | ″ | ″ | performance |
50 | ″ | ″ | phase transformation |
51 | ″ | ″ | project |
52 | ″ | ″ | properties |
53 | ″ | ″ | protective performance |
54 | ″ | ″ | quantum dots |
55 | ″ | ″ | range |
56 | ″ | ″ | rate |
57 | ″ | ″ | resistance |
58 | ″ | ″ | resistance properties |
59 | ″ | ″ | sample magnetometer |
60 | ″ | ″ | samples |
61 | ″ | ″ | semiconductor-like nature |
62 | ″ | ″ | solution |
63 | ″ | ″ | technique |
64 | ″ | ″ | temperature |
65 | ″ | ″ | temperature range |
66 | ″ | ″ | transformation |
67 | ″ | ″ | values |
68 | ″ | ″ | weight loss technique |
69 | ″ | ″ | work |
70 | ″ | schema:name | Electrical, magnetic, and corrosion resistance properties of TiO2 nanotubes filled with NiFe2O4 quantum dots and Ni–Fe nanoalloy |
71 | ″ | schema:pagination | 241-249 |
72 | ″ | schema:productId | N07914d86487a4db9a219e0a309ab68b6 |
73 | ″ | ″ | N81c18dfccfbb4045a2523e9ce76d28d5 |
74 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018563903 |
75 | ″ | ″ | https://doi.org/10.1007/s13204-012-0122-8 |
76 | ″ | schema:sdDatePublished | 2022-05-10T10:06 |
77 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
78 | ″ | schema:sdPublisher | Nc1efcd0b6fb64095bfd89413c1dc366f |
79 | ″ | schema:url | https://doi.org/10.1007/s13204-012-0122-8 |
80 | ″ | sgo:license | sg:explorer/license/ |
81 | ″ | sgo:sdDataset | articles |
82 | ″ | rdf:type | schema:ScholarlyArticle |
83 | N07914d86487a4db9a219e0a309ab68b6 | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1018563903 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | N1cdefd113c7b4462ae39430583aef047 | rdf:first | sg:person.015125715043.40 |
87 | ″ | rdf:rest | Na6518a7b911f408f80bb8ece540015e1 |
88 | N28c4c37fa82a42c592c8400ffb314564 | schema:issueNumber | 3 |
89 | ″ | rdf:type | schema:PublicationIssue |
90 | N60d725dcf76b4119ab3e31e9579901d1 | rdf:first | sg:person.012502366765.48 |
91 | ″ | rdf:rest | N1cdefd113c7b4462ae39430583aef047 |
92 | N81c18dfccfbb4045a2523e9ce76d28d5 | schema:name | doi |
93 | ″ | schema:value | 10.1007/s13204-012-0122-8 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Na6518a7b911f408f80bb8ece540015e1 | rdf:first | sg:person.015333711045.11 |
96 | ″ | rdf:rest | Ne5e2cc6ec1864c518290561f618d9e2b |
97 | Nc1efcd0b6fb64095bfd89413c1dc366f | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | Nc55403323e7f4e9fa6ea69fa0e1f8fc1 | rdf:first | sg:person.011313225416.52 |
100 | ″ | rdf:rest | N60d725dcf76b4119ab3e31e9579901d1 |
101 | Nc632302a25fb4ff48e687d17ad627672 | schema:volumeNumber | 3 |
102 | ″ | rdf:type | schema:PublicationVolume |
103 | Ne5e2cc6ec1864c518290561f618d9e2b | rdf:first | sg:person.016372107033.38 |
104 | ″ | rdf:rest | rdf:nil |
105 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Engineering |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Materials Engineering |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | sg:journal.1033811 | schema:issn | 2190-5509 |
112 | ″ | ″ | 2190-5517 |
113 | ″ | schema:name | Applied Nanoscience |
114 | ″ | schema:publisher | Springer Nature |
115 | ″ | rdf:type | schema:Periodical |
116 | sg:person.011313225416.52 | schema:affiliation | grid-institutes:grid.470969.5 |
117 | ″ | schema:familyName | Bahgat |
118 | ″ | schema:givenName | Mohamed |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313225416.52 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.012502366765.48 | schema:affiliation | grid-institutes:None |
122 | ″ | schema:familyName | Farghali |
123 | ″ | schema:givenName | Ahmed A. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502366765.48 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.015125715043.40 | schema:affiliation | grid-institutes:None |
127 | ″ | schema:familyName | Moustafa |
128 | ″ | schema:givenName | Ahmed F. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125715043.40 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.015333711045.11 | schema:affiliation | grid-institutes:None |
132 | ″ | schema:familyName | Khedr |
133 | ″ | schema:givenName | Mohamed H. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333711045.11 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.016372107033.38 | schema:affiliation | grid-institutes:grid.223827.e |
137 | ″ | schema:familyName | Mohassab-Ahmed |
138 | ″ | schema:givenName | Mohassab Y. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372107033.38 |
140 | ″ | rdf:type | schema:Person |
141 | sg:pub.10.1007/s10854-008-9716-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019271821 |
142 | ″ | ″ | https://doi.org/10.1007/s10854-008-9716-z |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1023/a:1016073606681 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021803584 |
145 | ″ | ″ | https://doi.org/10.1023/a:1016073606681 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1140/epjb/e2006-00081-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037152799 |
148 | ″ | ″ | https://doi.org/10.1140/epjb/e2006-00081-5 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | grid-institutes:None | schema:alternateName | Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt |
151 | ″ | schema:name | Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt |
152 | ″ | rdf:type | schema:Organization |
153 | grid-institutes:grid.223827.e | schema:alternateName | Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA |
154 | ″ | schema:name | Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA |
155 | ″ | rdf:type | schema:Organization |
156 | grid-institutes:grid.470969.5 | schema:alternateName | Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt |
157 | ″ | schema:name | Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt |
158 | ″ | rdf:type | schema:Organization |