Electrical, magnetic, and corrosion resistance properties of TiO2 nanotubes filled with NiFe2O4 quantum dots and Ni–Fe nanoalloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04-24

AUTHORS

Mohamed Bahgat, Ahmed A. Farghali, Ahmed F. Moustafa, Mohamed H. Khedr, Mohassab Y. Mohassab-Ahmed

ABSTRACT

This work was carried out as an integral part of a project aiming to improve the catalytic, electrical, magnetic, and mechanical properties of synthesized TiO2NTs filled with metal ferrites. TiO2 nanotubes in the anatase-phase (TiO2NTs) were prepared using a hydrothermal method followed by ion exchange and phase transformation. The obtained TiO2NTs were filled with NiFe2O4 quantum dots (QDs) and then reacted at 600 °C in a reducing atmosphere to produce TiO2NTs filled with Ni–Fe nanoalloy. The effect of the TiO2NTs’ coating on the dissolution rate of Ni–Fe nanoalloy in 0.5 M HCl solution was monitored chemically using a weight-loss technique that was performed at different temperatures. The TiO2NTs’ coating exhibited high protective performance and amazing corrosion resistance. The magnetic properties of the TiO2NTs filled with NiFe2O4 QDs and Ni–Fe nanoalloy compacts were analyzed by a vibrating sample magnetometer. The electrical conductivity-temperature dependence of anatase TiO2NTs, anatase TiO2NTs filled with NiFe2O4 quantum dots, anatase TiO2NTs filled with Ni–Fe nanoalloy, and NiFe2O4 was measured in the temperature range of 25–850 °C. The conductivity increased with temperature, indicating the semiconductor-like nature of the sample. During cooling, the conductivity retains values higher than that obtained during heating. More... »

PAGES

241-249

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8

DOI

http://dx.doi.org/10.1007/s13204-012-0122-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018563903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt", 
          "id": "http://www.grid.ac/institutes/grid.470969.5", 
          "name": [
            "Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahgat", 
        "givenName": "Mohamed", 
        "id": "sg:person.011313225416.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313225416.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farghali", 
        "givenName": "Ahmed A.", 
        "id": "sg:person.012502366765.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502366765.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moustafa", 
        "givenName": "Ahmed F.", 
        "id": "sg:person.015125715043.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125715043.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khedr", 
        "givenName": "Mohamed H.", 
        "id": "sg:person.015333711045.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333711045.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA", 
          "id": "http://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohassab-Ahmed", 
        "givenName": "Mohassab Y.", 
        "id": "sg:person.016372107033.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372107033.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2006-00081-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037152799", 
          "https://doi.org/10.1140/epjb/e2006-00081-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016073606681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021803584", 
          "https://doi.org/10.1023/a:1016073606681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-008-9716-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019271821", 
          "https://doi.org/10.1007/s10854-008-9716-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04-24", 
    "datePublishedReg": "2012-04-24", 
    "description": "This work was carried out as an integral part of a project aiming to improve the catalytic, electrical, magnetic, and mechanical properties of synthesized TiO2NTs filled with metal ferrites. TiO2 nanotubes in the anatase-phase (TiO2NTs) were prepared using a hydrothermal method followed by ion exchange and phase transformation. The obtained TiO2NTs were filled with NiFe2O4 quantum dots (QDs) and then reacted at 600\u00a0\u00b0C in a reducing atmosphere to produce TiO2NTs filled with Ni\u2013Fe nanoalloy. The effect of the TiO2NTs\u2019 coating on the dissolution rate of Ni\u2013Fe nanoalloy in 0.5\u00a0M HCl solution was monitored chemically using a weight-loss technique that was performed at different temperatures. The TiO2NTs\u2019 coating exhibited high protective performance and amazing corrosion resistance. The magnetic properties of the TiO2NTs filled with NiFe2O4 QDs and Ni\u2013Fe nanoalloy compacts were analyzed by a vibrating sample magnetometer. The electrical conductivity-temperature dependence of anatase TiO2NTs, anatase TiO2NTs filled with NiFe2O4 quantum dots, anatase TiO2NTs filled with Ni\u2013Fe nanoalloy, and NiFe2O4 was measured in the temperature range of 25\u2013850\u00a0\u00b0C. The conductivity increased with temperature, indicating the semiconductor-like nature of the sample. During cooling, the conductivity retains values higher than that obtained during heating.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13204-012-0122-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033811", 
        "issn": [
          "2190-5509", 
          "2190-5517"
        ], 
        "name": "Applied Nanoscience", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "electrical conductivity temperature dependence", 
      "corrosion resistance properties", 
      "high protective performance", 
      "semiconductor-like nature", 
      "corrosion resistance", 
      "mechanical properties", 
      "protective performance", 
      "resistance properties", 
      "phase transformation", 
      "weight loss technique", 
      "metal ferrites", 
      "conductivity temperature dependence", 
      "TiO2NTs", 
      "sample magnetometer", 
      "quantum dots", 
      "HCl solution", 
      "hydrothermal method", 
      "temperature range", 
      "different temperatures", 
      "dissolution rate", 
      "conductivity", 
      "TiO2", 
      "magnetic properties", 
      "ion exchange", 
      "temperature", 
      "properties", 
      "nanoalloys", 
      "coatings", 
      "ferrite", 
      "NiFe2O4", 
      "compacts", 
      "heating", 
      "cooling", 
      "magnetometer", 
      "dots", 
      "performance", 
      "atmosphere", 
      "solution", 
      "resistance", 
      "technique", 
      "range", 
      "method", 
      "dependence", 
      "work", 
      "integral part", 
      "values", 
      "transformation", 
      "effect", 
      "rate", 
      "project", 
      "samples", 
      "part", 
      "nature", 
      "exchange"
    ], 
    "name": "Electrical, magnetic, and corrosion resistance properties of TiO2 nanotubes filled with NiFe2O4 quantum dots and Ni\u2013Fe nanoalloy", 
    "pagination": "241-249", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018563903"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13204-012-0122-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13204-012-0122-8", 
      "https://app.dimensions.ai/details/publication/pub.1018563903"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13204-012-0122-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13204-012-0122-8'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13204-012-0122-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc55403323e7f4e9fa6ea69fa0e1f8fc1
4 schema:citation sg:pub.10.1007/s10854-008-9716-z
5 sg:pub.10.1023/a:1016073606681
6 sg:pub.10.1140/epjb/e2006-00081-5
7 schema:datePublished 2012-04-24
8 schema:datePublishedReg 2012-04-24
9 schema:description This work was carried out as an integral part of a project aiming to improve the catalytic, electrical, magnetic, and mechanical properties of synthesized TiO2NTs filled with metal ferrites. TiO2 nanotubes in the anatase-phase (TiO2NTs) were prepared using a hydrothermal method followed by ion exchange and phase transformation. The obtained TiO2NTs were filled with NiFe2O4 quantum dots (QDs) and then reacted at 600 °C in a reducing atmosphere to produce TiO2NTs filled with Ni–Fe nanoalloy. The effect of the TiO2NTs’ coating on the dissolution rate of Ni–Fe nanoalloy in 0.5 M HCl solution was monitored chemically using a weight-loss technique that was performed at different temperatures. The TiO2NTs’ coating exhibited high protective performance and amazing corrosion resistance. The magnetic properties of the TiO2NTs filled with NiFe2O4 QDs and Ni–Fe nanoalloy compacts were analyzed by a vibrating sample magnetometer. The electrical conductivity-temperature dependence of anatase TiO2NTs, anatase TiO2NTs filled with NiFe2O4 quantum dots, anatase TiO2NTs filled with Ni–Fe nanoalloy, and NiFe2O4 was measured in the temperature range of 25–850 °C. The conductivity increased with temperature, indicating the semiconductor-like nature of the sample. During cooling, the conductivity retains values higher than that obtained during heating.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N28c4c37fa82a42c592c8400ffb314564
14 Nc632302a25fb4ff48e687d17ad627672
15 sg:journal.1033811
16 schema:keywords HCl solution
17 NiFe2O4
18 TiO2
19 TiO2NTs
20 atmosphere
21 coatings
22 compacts
23 conductivity
24 conductivity temperature dependence
25 cooling
26 corrosion resistance
27 corrosion resistance properties
28 dependence
29 different temperatures
30 dissolution rate
31 dots
32 effect
33 electrical conductivity temperature dependence
34 exchange
35 ferrite
36 heating
37 high protective performance
38 hydrothermal method
39 integral part
40 ion exchange
41 magnetic properties
42 magnetometer
43 mechanical properties
44 metal ferrites
45 method
46 nanoalloys
47 nature
48 part
49 performance
50 phase transformation
51 project
52 properties
53 protective performance
54 quantum dots
55 range
56 rate
57 resistance
58 resistance properties
59 sample magnetometer
60 samples
61 semiconductor-like nature
62 solution
63 technique
64 temperature
65 temperature range
66 transformation
67 values
68 weight loss technique
69 work
70 schema:name Electrical, magnetic, and corrosion resistance properties of TiO2 nanotubes filled with NiFe2O4 quantum dots and Ni–Fe nanoalloy
71 schema:pagination 241-249
72 schema:productId N07914d86487a4db9a219e0a309ab68b6
73 N81c18dfccfbb4045a2523e9ce76d28d5
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018563903
75 https://doi.org/10.1007/s13204-012-0122-8
76 schema:sdDatePublished 2022-05-10T10:06
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nc1efcd0b6fb64095bfd89413c1dc366f
79 schema:url https://doi.org/10.1007/s13204-012-0122-8
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N07914d86487a4db9a219e0a309ab68b6 schema:name dimensions_id
84 schema:value pub.1018563903
85 rdf:type schema:PropertyValue
86 N1cdefd113c7b4462ae39430583aef047 rdf:first sg:person.015125715043.40
87 rdf:rest Na6518a7b911f408f80bb8ece540015e1
88 N28c4c37fa82a42c592c8400ffb314564 schema:issueNumber 3
89 rdf:type schema:PublicationIssue
90 N60d725dcf76b4119ab3e31e9579901d1 rdf:first sg:person.012502366765.48
91 rdf:rest N1cdefd113c7b4462ae39430583aef047
92 N81c18dfccfbb4045a2523e9ce76d28d5 schema:name doi
93 schema:value 10.1007/s13204-012-0122-8
94 rdf:type schema:PropertyValue
95 Na6518a7b911f408f80bb8ece540015e1 rdf:first sg:person.015333711045.11
96 rdf:rest Ne5e2cc6ec1864c518290561f618d9e2b
97 Nc1efcd0b6fb64095bfd89413c1dc366f schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nc55403323e7f4e9fa6ea69fa0e1f8fc1 rdf:first sg:person.011313225416.52
100 rdf:rest N60d725dcf76b4119ab3e31e9579901d1
101 Nc632302a25fb4ff48e687d17ad627672 schema:volumeNumber 3
102 rdf:type schema:PublicationVolume
103 Ne5e2cc6ec1864c518290561f618d9e2b rdf:first sg:person.016372107033.38
104 rdf:rest rdf:nil
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1033811 schema:issn 2190-5509
112 2190-5517
113 schema:name Applied Nanoscience
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.011313225416.52 schema:affiliation grid-institutes:grid.470969.5
117 schema:familyName Bahgat
118 schema:givenName Mohamed
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313225416.52
120 rdf:type schema:Person
121 sg:person.012502366765.48 schema:affiliation grid-institutes:None
122 schema:familyName Farghali
123 schema:givenName Ahmed A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502366765.48
125 rdf:type schema:Person
126 sg:person.015125715043.40 schema:affiliation grid-institutes:None
127 schema:familyName Moustafa
128 schema:givenName Ahmed F.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125715043.40
130 rdf:type schema:Person
131 sg:person.015333711045.11 schema:affiliation grid-institutes:None
132 schema:familyName Khedr
133 schema:givenName Mohamed H.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333711045.11
135 rdf:type schema:Person
136 sg:person.016372107033.38 schema:affiliation grid-institutes:grid.223827.e
137 schema:familyName Mohassab-Ahmed
138 schema:givenName Mohassab Y.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372107033.38
140 rdf:type schema:Person
141 sg:pub.10.1007/s10854-008-9716-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019271821
142 https://doi.org/10.1007/s10854-008-9716-z
143 rdf:type schema:CreativeWork
144 sg:pub.10.1023/a:1016073606681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021803584
145 https://doi.org/10.1023/a:1016073606681
146 rdf:type schema:CreativeWork
147 sg:pub.10.1140/epjb/e2006-00081-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037152799
148 https://doi.org/10.1140/epjb/e2006-00081-5
149 rdf:type schema:CreativeWork
150 grid-institutes:None schema:alternateName Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt
151 schema:name Nanoscience and Nanotechnology Unit, Chemistry Department, Faculty of Science, Beni-Sueif University, 62111, Beni-Sueif, Egypt
152 rdf:type schema:Organization
153 grid-institutes:grid.223827.e schema:alternateName Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA
154 schema:name Metallurgical Engineering Department, University of Utah, 84112, Salt Lake City, UT, USA
155 rdf:type schema:Organization
156 grid-institutes:grid.470969.5 schema:alternateName Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt
157 schema:name Pyrometallurgy Laboratory, Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan, Cairo, Egypt
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...