Production assessment of low production rate of well in a supergiant gas condensate reservoir: application of an integrated strategy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Reza Azin, Hassan Sedaghati, Rouhollah Fatehi, Shahriar Osfouri, Zahra Sakhaei

ABSTRACT

In this study, a novel and integrated strategy is proposed to investigate the problem of low production rate of gas well in a supergiant gas condensate reservoir. In this strategy, the nodal analysis approach is applied for production optimization and performance assessment of a real inclined well. A multi-layered gas condensate reservoir model was constructed and simulated using actual reservoir rock and fluid properties. Effects of reservoir rock and fluid model simplification on inflow performance relationship (IPR) curves were investigated. Also, five different tubing pressure drop models were evaluated using extracted pseudo spontaneous potential (PSP) data from reservoir model to select the most accurate one for computing tubing performance relationship (TPR) data. Then, accuracy of nodal analysis in prediction of well operating point was investigated through comparing with reservoir simulator results. Results of nodal analysis for this well indicated that a significant discrepancy exists between calculated and actual production rate. Sensitivity analysis on uncertainty parameters, skin factor and drainage radius, shows that skin factor of the investigated well varies between 11 and 12.9 for drainage radius in the range of 3000–20000 ft. Therefore, the problem of low well production rate was attributed to high skin factor as a result of formation damage. Also, results demonstrated that reduction of skin can lead to maximum 73% enhancement in daily volumetric gas production rate of well. More... »

PAGES

543-560

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13202-018-0491-y

DOI

http://dx.doi.org/10.1007/s13202-018-0491-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104327506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azin", 
        "givenName": "Reza", 
        "id": "sg:person.010232372146.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232372146.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedaghati", 
        "givenName": "Hassan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fatehi", 
        "givenName": "Rouhollah", 
        "id": "sg:person.013055406333.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055406333.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osfouri", 
        "givenName": "Shahriar", 
        "id": "sg:person.015024045542.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015024045542.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakhaei", 
        "givenName": "Zahra", 
        "id": "sg:person.016471236417.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016471236417.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jngse.2014.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016687854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ngib.2014.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018560327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037849979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petlm.2015.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040761115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2009.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045199173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(85)90060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049700681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(85)90060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049700681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10916466.2010.540609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/102715-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068946423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/10528-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068946644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/124364-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068948946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/1476-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/1495-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/15138-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/1546-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068951181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/161933-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068951642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/16880-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068952297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/2-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068953961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/2626-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068955307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/30714-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068956083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/4007-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068956847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/440-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068957010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/5696-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068957764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/6134-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068958096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/72-03-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068959055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/862-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068960673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/89754-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068961272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/940-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068962340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/942126-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068962426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5419/bjpg2012-0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072840364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2017.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083906999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084096646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-017-0853-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519333", 
          "https://doi.org/10.1007/s11242-017-0853-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-017-0853-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519333", 
          "https://doi.org/10.1007/s11242-017-0853-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13202-017-0351-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085052749", 
          "https://doi.org/10.1007/s13202-017-0351-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13202-017-0351-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085052749", 
          "https://doi.org/10.1007/s13202-017-0351-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/36252-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096934358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/26915-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096937887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/102669-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096943844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/13231-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096946794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/90774-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096948110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/75503-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096953101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/164356-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096953610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/77565-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096954744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/102240-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096976416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/20630-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096976813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/128050-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096978900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/116661-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096981084"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In this study, a novel and integrated strategy is proposed to investigate the problem of low production rate of gas well in a supergiant gas condensate reservoir. In this strategy, the nodal analysis approach is applied for production optimization and performance assessment of a real inclined well. A multi-layered gas condensate reservoir model was constructed and simulated using actual reservoir rock and fluid properties. Effects of reservoir rock and fluid model simplification on inflow performance relationship (IPR) curves were investigated. Also, five different tubing pressure drop models were evaluated using extracted pseudo spontaneous potential (PSP) data from reservoir model to select the most accurate one for computing tubing performance relationship (TPR) data. Then, accuracy of nodal analysis in prediction of well operating point was investigated through comparing with reservoir simulator results. Results of nodal analysis for this well indicated that a significant discrepancy exists between calculated and actual production rate. Sensitivity analysis on uncertainty parameters, skin factor and drainage radius, shows that skin factor of the investigated well varies between 11 and 12.9 for drainage radius in the range of 3000\u201320000 ft. Therefore, the problem of low well production rate was attributed to high skin factor as a result of formation damage. Also, results demonstrated that reduction of skin can lead to maximum 73% enhancement in daily volumetric gas production rate of well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13202-018-0491-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053339", 
        "issn": [
          "2190-0558", 
          "2190-0566"
        ], 
        "name": "Journal of Petroleum Exploration and Production Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Production assessment of low production rate of well in a supergiant gas condensate reservoir: application of an integrated strategy", 
    "pagination": "543-560", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "268761c216f21388537c38590c1083c4f21c1c6dbe05189d794626cbe1db0989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13202-018-0491-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104327506"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13202-018-0491-y", 
      "https://app.dimensions.ai/details/publication/pub.1104327506"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13202-018-0491-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13202-018-0491-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13202-018-0491-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13202-018-0491-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13202-018-0491-y'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13202-018-0491-y schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N8164448cbe5841269f77b6a795c4209c
4 schema:citation sg:pub.10.1007/s11242-017-0853-9
5 sg:pub.10.1007/s13202-017-0351-1
6 https://doi.org/10.1016/0301-9322(85)90060-6
7 https://doi.org/10.1016/j.applthermaleng.2008.10.008
8 https://doi.org/10.1016/j.jngse.2014.07.020
9 https://doi.org/10.1016/j.jngse.2017.02.017
10 https://doi.org/10.1016/j.molliq.2017.03.005
11 https://doi.org/10.1016/j.ngib.2014.10.011
12 https://doi.org/10.1016/j.petlm.2015.11.004
13 https://doi.org/10.1016/j.petrol.2009.05.003
14 https://doi.org/10.1080/10916466.2010.540609
15 https://doi.org/10.2118/102240-ms
16 https://doi.org/10.2118/102669-ms
17 https://doi.org/10.2118/102715-pa
18 https://doi.org/10.2118/10528-pa
19 https://doi.org/10.2118/116661-ms
20 https://doi.org/10.2118/124364-pa
21 https://doi.org/10.2118/128050-ms
22 https://doi.org/10.2118/13231-ms
23 https://doi.org/10.2118/1476-pa
24 https://doi.org/10.2118/1495-pa
25 https://doi.org/10.2118/15138-pa
26 https://doi.org/10.2118/1546-pa
27 https://doi.org/10.2118/161933-pa
28 https://doi.org/10.2118/164356-ms
29 https://doi.org/10.2118/16880-pa
30 https://doi.org/10.2118/2-pa
31 https://doi.org/10.2118/20630-ms
32 https://doi.org/10.2118/2626-pa
33 https://doi.org/10.2118/26915-ms
34 https://doi.org/10.2118/30714-pa
35 https://doi.org/10.2118/36252-ms
36 https://doi.org/10.2118/4007-pa
37 https://doi.org/10.2118/440-pa
38 https://doi.org/10.2118/5696-pa
39 https://doi.org/10.2118/6134-pa
40 https://doi.org/10.2118/72-03-04
41 https://doi.org/10.2118/75503-ms
42 https://doi.org/10.2118/77565-ms
43 https://doi.org/10.2118/862-g
44 https://doi.org/10.2118/89754-pa
45 https://doi.org/10.2118/90774-ms
46 https://doi.org/10.2118/940-pa
47 https://doi.org/10.2118/942126-g
48 https://doi.org/10.5419/bjpg2012-0013
49 schema:datePublished 2019-03
50 schema:datePublishedReg 2019-03-01
51 schema:description In this study, a novel and integrated strategy is proposed to investigate the problem of low production rate of gas well in a supergiant gas condensate reservoir. In this strategy, the nodal analysis approach is applied for production optimization and performance assessment of a real inclined well. A multi-layered gas condensate reservoir model was constructed and simulated using actual reservoir rock and fluid properties. Effects of reservoir rock and fluid model simplification on inflow performance relationship (IPR) curves were investigated. Also, five different tubing pressure drop models were evaluated using extracted pseudo spontaneous potential (PSP) data from reservoir model to select the most accurate one for computing tubing performance relationship (TPR) data. Then, accuracy of nodal analysis in prediction of well operating point was investigated through comparing with reservoir simulator results. Results of nodal analysis for this well indicated that a significant discrepancy exists between calculated and actual production rate. Sensitivity analysis on uncertainty parameters, skin factor and drainage radius, shows that skin factor of the investigated well varies between 11 and 12.9 for drainage radius in the range of 3000–20000 ft. Therefore, the problem of low well production rate was attributed to high skin factor as a result of formation damage. Also, results demonstrated that reduction of skin can lead to maximum 73% enhancement in daily volumetric gas production rate of well.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N6afa617bca2046ca94f93ff338496e9e
56 N7c949aedd26f4fb8b33605bbcc3f3a6b
57 sg:journal.1053339
58 schema:name Production assessment of low production rate of well in a supergiant gas condensate reservoir: application of an integrated strategy
59 schema:pagination 543-560
60 schema:productId N74f817bc33694501af0137f992c51e5d
61 Nc2894d1a3be2459a94f5306ed54c825e
62 Nf27cc69798cb49db81f6a52a64e7add3
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104327506
64 https://doi.org/10.1007/s13202-018-0491-y
65 schema:sdDatePublished 2019-04-11T10:31
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nfa2b84a1aa89436c95221df490acd1b8
68 schema:url https://link.springer.com/10.1007%2Fs13202-018-0491-y
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N1f025f4c94d84cad9651e2457742919f rdf:first Nced52ed1a39a4de68ad8b5a69f926cf6
73 rdf:rest N61682078cca14bf0aa8a2c78d41e672c
74 N61682078cca14bf0aa8a2c78d41e672c rdf:first sg:person.013055406333.57
75 rdf:rest Nea19c1cc8da746719ea4b90dd1328958
76 N6afa617bca2046ca94f93ff338496e9e schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N74f817bc33694501af0137f992c51e5d schema:name dimensions_id
79 schema:value pub.1104327506
80 rdf:type schema:PropertyValue
81 N7c949aedd26f4fb8b33605bbcc3f3a6b schema:volumeNumber 9
82 rdf:type schema:PublicationVolume
83 N8164448cbe5841269f77b6a795c4209c rdf:first sg:person.010232372146.88
84 rdf:rest N1f025f4c94d84cad9651e2457742919f
85 Nc2894d1a3be2459a94f5306ed54c825e schema:name readcube_id
86 schema:value 268761c216f21388537c38590c1083c4f21c1c6dbe05189d794626cbe1db0989
87 rdf:type schema:PropertyValue
88 Nc7353e2cef9c4718ad9a84c4237b74d7 rdf:first sg:person.016471236417.85
89 rdf:rest rdf:nil
90 Nced52ed1a39a4de68ad8b5a69f926cf6 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
91 schema:familyName Sedaghati
92 schema:givenName Hassan
93 rdf:type schema:Person
94 Nea19c1cc8da746719ea4b90dd1328958 rdf:first sg:person.015024045542.08
95 rdf:rest Nc7353e2cef9c4718ad9a84c4237b74d7
96 Nf27cc69798cb49db81f6a52a64e7add3 schema:name doi
97 schema:value 10.1007/s13202-018-0491-y
98 rdf:type schema:PropertyValue
99 Nfa2b84a1aa89436c95221df490acd1b8 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
105 schema:name Resources Engineering and Extractive Metallurgy
106 rdf:type schema:DefinedTerm
107 sg:journal.1053339 schema:issn 2190-0558
108 2190-0566
109 schema:name Journal of Petroleum Exploration and Production Technology
110 rdf:type schema:Periodical
111 sg:person.010232372146.88 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
112 schema:familyName Azin
113 schema:givenName Reza
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232372146.88
115 rdf:type schema:Person
116 sg:person.013055406333.57 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
117 schema:familyName Fatehi
118 schema:givenName Rouhollah
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055406333.57
120 rdf:type schema:Person
121 sg:person.015024045542.08 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
122 schema:familyName Osfouri
123 schema:givenName Shahriar
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015024045542.08
125 rdf:type schema:Person
126 sg:person.016471236417.85 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
127 schema:familyName Sakhaei
128 schema:givenName Zahra
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016471236417.85
130 rdf:type schema:Person
131 sg:pub.10.1007/s11242-017-0853-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519333
132 https://doi.org/10.1007/s11242-017-0853-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s13202-017-0351-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085052749
135 https://doi.org/10.1007/s13202-017-0351-1
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0301-9322(85)90060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049700681
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.applthermaleng.2008.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037849979
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jngse.2014.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016687854
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jngse.2017.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083906999
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.molliq.2017.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084096646
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ngib.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018560327
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.petlm.2015.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040761115
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.petrol.2009.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045199173
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/10916466.2010.540609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847559
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2118/102240-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096976416
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2118/102669-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096943844
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2118/102715-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068946423
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2118/10528-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068946644
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2118/116661-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096981084
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2118/124364-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068948946
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2118/128050-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096978900
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2118/13231-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096946794
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2118/1476-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950686
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2118/1495-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950823
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2118/15138-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950946
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2118/1546-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068951181
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2118/161933-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068951642
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2118/164356-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096953610
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2118/16880-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068952297
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2118/2-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068953961
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2118/20630-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096976813
188 rdf:type schema:CreativeWork
189 https://doi.org/10.2118/2626-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068955307
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2118/26915-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096937887
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2118/30714-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068956083
194 rdf:type schema:CreativeWork
195 https://doi.org/10.2118/36252-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096934358
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2118/4007-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068956847
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2118/440-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068957010
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2118/5696-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068957764
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2118/6134-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068958096
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2118/72-03-04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068959055
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2118/75503-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096953101
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2118/77565-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096954744
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2118/862-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1068960673
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2118/89754-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068961272
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2118/90774-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096948110
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2118/940-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962340
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2118/942126-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962426
220 rdf:type schema:CreativeWork
221 https://doi.org/10.5419/bjpg2012-0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072840364
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
224 schema:name Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
225 Department of Mechanical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
226 Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...