Development of an intelligent model for wax deposition in oil pipeline View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03

AUTHORS

Mohammad Javad Jalalnezhad, Vahid Kamali

ABSTRACT

Crude oil transport is one important part of the oil industry. Wax deposition is a very complex phenomenon that in recent years is one of the major challenges in oil industry. Wax deposited on the inner surface of crude oil pipelines are capable to reduce or completely stop the oil flow and the oil industry imposing large costs. The main objective of this study was to present a novel approach for predication of wax deposition thickness in single-phase turbulent flow rate. Using experimental data set and Adaptive neural-fuzzy inference system (ANFIS) model was developed. From the results predicted by this model, it can be pointed out that the ANFIS model can be used as powerful tools for prediction of wax deposition thickness in single-phase turbulent flow rate with mean square error, absolute relative deviation error and average absolute deviation error which are 0.00077034, 0.015720 and 0.097961, respectively. More... »

PAGES

129-133

References to SciGraph publications

  • 2004-09. A mathematical model for Bingham-like fluids with visco-elastic core in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13202-015-0160-3

    DOI

    http://dx.doi.org/10.1007/s13202-015-0160-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009822600


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shahid Bahonar University of Kerman", 
              "id": "https://www.grid.ac/institutes/grid.412503.1", 
              "name": [
                "Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran", 
                "Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jalalnezhad", 
            "givenName": "Mohammad Javad", 
            "id": "sg:person.015254325375.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254325375.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shahid Bahonar University of Kerman", 
              "id": "https://www.grid.ac/institutes/grid.412503.1", 
              "name": [
                "Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamali", 
            "givenName": "Vahid", 
            "id": "sg:person.011700774335.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700774335.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1081/lft-120038726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001124844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2012.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004905373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1004-9541(06)60135-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009513697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00033-004-3056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015970819", 
              "https://doi.org/10.1007/s00033-004-3056-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019546013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1081/lft-100001231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024135338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00908310490448253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025864444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0895-7177(97)00031-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028277073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aic.690420120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029145625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0020-7373(75)80002-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033324589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-0233/22/7/075701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040506262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef700434h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055481024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef700434h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055481024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef900920x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055482474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef900920x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055482474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.256541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061121711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mspec.1984.6370431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061427448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1985.6313399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061793740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/2175-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068954495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/8071-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096936758"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03", 
        "datePublishedReg": "2016-03-01", 
        "description": "Crude oil transport is one important part of the oil industry. Wax deposition is a very complex phenomenon that in recent years is one of the major challenges in oil industry. Wax deposited on the inner surface of crude oil pipelines are capable to reduce or completely stop the oil flow and the oil industry imposing large costs. The main objective of this study was to present a novel approach for predication of wax deposition thickness in single-phase turbulent flow rate. Using experimental data set and Adaptive neural-fuzzy inference system (ANFIS) model was developed. From the results predicted by this model, it can be pointed out that the ANFIS model can be used as powerful tools for prediction of wax deposition thickness in single-phase turbulent flow rate with mean square error, absolute relative deviation error and average absolute deviation error which are 0.00077034, 0.015720 and 0.097961, respectively.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13202-015-0160-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053339", 
            "issn": [
              "2190-0558", 
              "2190-0566"
            ], 
            "name": "Journal of Petroleum Exploration and Production Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Development of an intelligent model for wax deposition in oil pipeline", 
        "pagination": "129-133", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2ecb951dca5cbd6ff8cf70af09f1d5408f0326cace35c95c248d6dc2cf6e1514"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13202-015-0160-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009822600"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13202-015-0160-3", 
          "https://app.dimensions.ai/details/publication/pub.1009822600"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000520.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs13202-015-0160-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13202-015-0160-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13202-015-0160-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13202-015-0160-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13202-015-0160-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13202-015-0160-3 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N061382809eec4cfbbb5bbd124199d0a3
    4 schema:citation sg:pub.10.1007/s00033-004-3056-5
    5 https://doi.org/10.1002/aic.690420120
    6 https://doi.org/10.1016/j.fuel.2012.10.004
    7 https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.007
    8 https://doi.org/10.1016/s0020-7373(75)80002-2
    9 https://doi.org/10.1016/s0895-7177(97)00031-9
    10 https://doi.org/10.1016/s1004-9541(06)60135-3
    11 https://doi.org/10.1021/ef700434h
    12 https://doi.org/10.1021/ef900920x
    13 https://doi.org/10.1080/00908310490448253
    14 https://doi.org/10.1081/lft-100001231
    15 https://doi.org/10.1081/lft-120038726
    16 https://doi.org/10.1088/0957-0233/22/7/075701
    17 https://doi.org/10.1109/21.256541
    18 https://doi.org/10.1109/mspec.1984.6370431
    19 https://doi.org/10.1109/tsmc.1985.6313399
    20 https://doi.org/10.2118/2175-pa
    21 https://doi.org/10.2118/8071-ms
    22 schema:datePublished 2016-03
    23 schema:datePublishedReg 2016-03-01
    24 schema:description Crude oil transport is one important part of the oil industry. Wax deposition is a very complex phenomenon that in recent years is one of the major challenges in oil industry. Wax deposited on the inner surface of crude oil pipelines are capable to reduce or completely stop the oil flow and the oil industry imposing large costs. The main objective of this study was to present a novel approach for predication of wax deposition thickness in single-phase turbulent flow rate. Using experimental data set and Adaptive neural-fuzzy inference system (ANFIS) model was developed. From the results predicted by this model, it can be pointed out that the ANFIS model can be used as powerful tools for prediction of wax deposition thickness in single-phase turbulent flow rate with mean square error, absolute relative deviation error and average absolute deviation error which are 0.00077034, 0.015720 and 0.097961, respectively.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N48a671e0b5744510a6a8c74d209585b7
    29 N6b1919b64d6f4bc0a96e9e8580ce1f61
    30 sg:journal.1053339
    31 schema:name Development of an intelligent model for wax deposition in oil pipeline
    32 schema:pagination 129-133
    33 schema:productId N2028cf52f11c44a2937eeee484323a72
    34 N27070cdd81324d75b5f725778aeef15f
    35 N67b6b5d5f254442db6f0b94953e2b918
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009822600
    37 https://doi.org/10.1007/s13202-015-0160-3
    38 schema:sdDatePublished 2019-04-10T17:33
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N3ad52ed647aa43c3b30386cac0ca2f20
    41 schema:url http://link.springer.com/10.1007%2Fs13202-015-0160-3
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N018caebaafb94d1391242b0b917508d4 rdf:first sg:person.011700774335.38
    46 rdf:rest rdf:nil
    47 N061382809eec4cfbbb5bbd124199d0a3 rdf:first sg:person.015254325375.21
    48 rdf:rest N018caebaafb94d1391242b0b917508d4
    49 N2028cf52f11c44a2937eeee484323a72 schema:name dimensions_id
    50 schema:value pub.1009822600
    51 rdf:type schema:PropertyValue
    52 N27070cdd81324d75b5f725778aeef15f schema:name doi
    53 schema:value 10.1007/s13202-015-0160-3
    54 rdf:type schema:PropertyValue
    55 N3ad52ed647aa43c3b30386cac0ca2f20 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N48a671e0b5744510a6a8c74d209585b7 schema:volumeNumber 6
    58 rdf:type schema:PublicationVolume
    59 N67b6b5d5f254442db6f0b94953e2b918 schema:name readcube_id
    60 schema:value 2ecb951dca5cbd6ff8cf70af09f1d5408f0326cace35c95c248d6dc2cf6e1514
    61 rdf:type schema:PropertyValue
    62 N6b1919b64d6f4bc0a96e9e8580ce1f61 schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Engineering
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Interdisciplinary Engineering
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1053339 schema:issn 2190-0558
    71 2190-0566
    72 schema:name Journal of Petroleum Exploration and Production Technology
    73 rdf:type schema:Periodical
    74 sg:person.011700774335.38 schema:affiliation https://www.grid.ac/institutes/grid.412503.1
    75 schema:familyName Kamali
    76 schema:givenName Vahid
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700774335.38
    78 rdf:type schema:Person
    79 sg:person.015254325375.21 schema:affiliation https://www.grid.ac/institutes/grid.412503.1
    80 schema:familyName Jalalnezhad
    81 schema:givenName Mohammad Javad
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254325375.21
    83 rdf:type schema:Person
    84 sg:pub.10.1007/s00033-004-3056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015970819
    85 https://doi.org/10.1007/s00033-004-3056-5
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1002/aic.690420120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029145625
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.fuel.2012.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004905373
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019546013
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/s0020-7373(75)80002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033324589
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/s0895-7177(97)00031-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028277073
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/s1004-9541(06)60135-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009513697
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1021/ef700434h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055481024
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1021/ef900920x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055482474
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1080/00908310490448253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025864444
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1081/lft-100001231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024135338
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1081/lft-120038726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001124844
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1088/0957-0233/22/7/075701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040506262
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/21.256541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121711
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/mspec.1984.6370431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061427448
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/tsmc.1985.6313399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793740
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.2118/2175-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068954495
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.2118/8071-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096936758
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.412503.1 schema:alternateName Shahid Bahonar University of Kerman
    122 schema:name Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
    123 Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...