Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-13

AUTHORS

Nnanna Eke-emezie, Benjamin Rueben Etuk, Otobong Peter Akpan, Okechukwu Chibuzor Chinweoke

ABSTRACT

The continuous generation of waste resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong pH-dependent adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80 min and adsorbent dosage of 3.0 g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich–Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi^{2}$$\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich–Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856 mg.g−1. More... »

PAGES

157

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3

DOI

http://dx.doi.org/10.1007/s13201-022-01679-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147859695


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eke-emezie", 
        "givenName": "Nnanna", 
        "id": "sg:person.013664501333.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664501333.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etuk", 
        "givenName": "Benjamin Rueben", 
        "id": "sg:person.014462061733.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462061733.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akpan", 
        "givenName": "Otobong Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chinweoke", 
        "givenName": "Okechukwu Chibuzor", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005287510793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028075288", 
          "https://doi.org/10.1023/a:1005287510793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-020-01218-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127542145", 
          "https://doi.org/10.1007/s13201-020-01218-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-13", 
    "datePublishedReg": "2022-05-13", 
    "description": "The continuous generation of waste\u00a0resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong\u00a0pH-dependent  adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80\u00a0min and adsorbent dosage of 3.0\u00a0g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich\u2013Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (\u03c72\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\chi^{2}$$\\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich\u2013Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856\u00a0mg.g\u22121.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13201-022-01679-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051421", 
        "issn": [
          "2190-5487", 
          "2190-5495"
        ], 
        "name": "Applied Water Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "adsorption process", 
      "cyanide removal", 
      "adsorbent dosage", 
      "cassava wastewater", 
      "pseudo-second order kinetic model", 
      "Redlich-Peterson", 
      "removal of cyanide", 
      "dominant adsorption process", 
      "mono-layer adsorption", 
      "kinetic model", 
      "equilibrium data analysis", 
      "Elovich kinetic models", 
      "monolayer adsorption capacity", 
      "liquid waste", 
      "isotherm model", 
      "adsorption capacity", 
      "batch studies", 
      "Langmuir model", 
      "shell carbon", 
      "contact time", 
      "equilibrium time", 
      "processing mills", 
      "fit isotherm model", 
      "experimental data", 
      "wastewater", 
      "error deviation", 
      "cassava processing mill", 
      "waste", 
      "nonlinear regression analysis", 
      "continuous generation", 
      "batch procedure", 
      "square error", 
      "different cyanide concentrations", 
      "cyanide concentration", 
      "coefficient of determination", 
      "H3PO4", 
      "influence of variables", 
      "kinetic data", 
      "removal", 
      "industrial activities", 
      "carbon", 
      "Elovich", 
      "Freundlich", 
      "process", 
      "Langmuir", 
      "mill", 
      "adsorption", 
      "model", 
      "chemisorption", 
      "coefficient", 
      "pseudo", 
      "error", 
      "generation", 
      "influence", 
      "time", 
      "analysis", 
      "capacity", 
      "dosage", 
      "deviation", 
      "preparation", 
      "results", 
      "min", 
      "determination", 
      "concentration", 
      "cyanide", 
      "data", 
      "procedure", 
      "use", 
      "APSC", 
      "study", 
      "rise", 
      "sum", 
      "variables", 
      "data analysis", 
      "concern", 
      "percentage", 
      "high percentage", 
      "experimental model", 
      "major cause", 
      "activity", 
      "cause", 
      "countries", 
      "regression analysis", 
      "humans", 
      "Chi-square"
    ], 
    "name": "Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon", 
    "pagination": "157", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147859695"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13201-022-01679-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13201-022-01679-3", 
      "https://app.dimensions.ai/details/publication/pub.1147859695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_921.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13201-022-01679-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      111 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13201-022-01679-3 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N53a48f5933c3401190d5a6025726a1df
4 schema:citation sg:pub.10.1007/s13201-020-01218-y
5 sg:pub.10.1023/a:1005287510793
6 schema:datePublished 2022-05-13
7 schema:datePublishedReg 2022-05-13
8 schema:description The continuous generation of waste resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong pH-dependent adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80 min and adsorbent dosage of 3.0 g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich–Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi^{2}$$\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich–Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856 mg.g−1.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N5b9beb71f8aa413ebc5d9adaae13deb2
12 Nc8ee17a8e1a74b1cbe4a72919e227e04
13 sg:journal.1051421
14 schema:keywords APSC
15 Chi-square
16 Elovich
17 Elovich kinetic models
18 Freundlich
19 H3PO4
20 Langmuir
21 Langmuir model
22 Redlich-Peterson
23 activity
24 adsorbent dosage
25 adsorption
26 adsorption capacity
27 adsorption process
28 analysis
29 batch procedure
30 batch studies
31 capacity
32 carbon
33 cassava processing mill
34 cassava wastewater
35 cause
36 chemisorption
37 coefficient
38 coefficient of determination
39 concentration
40 concern
41 contact time
42 continuous generation
43 countries
44 cyanide
45 cyanide concentration
46 cyanide removal
47 data
48 data analysis
49 determination
50 deviation
51 different cyanide concentrations
52 dominant adsorption process
53 dosage
54 equilibrium data analysis
55 equilibrium time
56 error
57 error deviation
58 experimental data
59 experimental model
60 fit isotherm model
61 generation
62 high percentage
63 humans
64 industrial activities
65 influence
66 influence of variables
67 isotherm model
68 kinetic data
69 kinetic model
70 liquid waste
71 major cause
72 mill
73 min
74 model
75 mono-layer adsorption
76 monolayer adsorption capacity
77 nonlinear regression analysis
78 percentage
79 preparation
80 procedure
81 process
82 processing mills
83 pseudo
84 pseudo-second order kinetic model
85 regression analysis
86 removal
87 removal of cyanide
88 results
89 rise
90 shell carbon
91 square error
92 study
93 sum
94 time
95 use
96 variables
97 waste
98 wastewater
99 schema:name Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon
100 schema:pagination 157
101 schema:productId Nfbbe2a258c094d368322a528a442d8d6
102 Nfe6f972c48344fb1bec3849261574f89
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147859695
104 https://doi.org/10.1007/s13201-022-01679-3
105 schema:sdDatePublished 2022-08-04T17:10
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N40d5b19623b546db951a8f7265a05cd7
108 schema:url https://doi.org/10.1007/s13201-022-01679-3
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N40d5b19623b546db951a8f7265a05cd7 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N46214bde1abd4a9291eb1b4f245fcebd schema:affiliation grid-institutes:grid.412960.8
115 schema:familyName Akpan
116 schema:givenName Otobong Peter
117 rdf:type schema:Person
118 N51eff39c2e354e2695695c0c2a064950 rdf:first N83134afd635c4017825ec3518810213c
119 rdf:rest rdf:nil
120 N53a48f5933c3401190d5a6025726a1df rdf:first sg:person.013664501333.29
121 rdf:rest Ndfafbf6118ef46b888a6926c0574ae8d
122 N5b9beb71f8aa413ebc5d9adaae13deb2 schema:issueNumber 7
123 rdf:type schema:PublicationIssue
124 N83134afd635c4017825ec3518810213c schema:affiliation grid-institutes:grid.412960.8
125 schema:familyName Chinweoke
126 schema:givenName Okechukwu Chibuzor
127 rdf:type schema:Person
128 N8a6429a7fd034c8cb9402bdbed4822fd rdf:first N46214bde1abd4a9291eb1b4f245fcebd
129 rdf:rest N51eff39c2e354e2695695c0c2a064950
130 Nc8ee17a8e1a74b1cbe4a72919e227e04 schema:volumeNumber 12
131 rdf:type schema:PublicationVolume
132 Ndfafbf6118ef46b888a6926c0574ae8d rdf:first sg:person.014462061733.17
133 rdf:rest N8a6429a7fd034c8cb9402bdbed4822fd
134 Nfbbe2a258c094d368322a528a442d8d6 schema:name doi
135 schema:value 10.1007/s13201-022-01679-3
136 rdf:type schema:PropertyValue
137 Nfe6f972c48344fb1bec3849261574f89 schema:name dimensions_id
138 schema:value pub.1147859695
139 rdf:type schema:PropertyValue
140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
141 schema:name Engineering
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
144 schema:name Chemical Engineering
145 rdf:type schema:DefinedTerm
146 sg:journal.1051421 schema:issn 2190-5487
147 2190-5495
148 schema:name Applied Water Science
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.013664501333.29 schema:affiliation grid-institutes:grid.412960.8
152 schema:familyName Eke-emezie
153 schema:givenName Nnanna
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664501333.29
155 rdf:type schema:Person
156 sg:person.014462061733.17 schema:affiliation grid-institutes:grid.412960.8
157 schema:familyName Etuk
158 schema:givenName Benjamin Rueben
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462061733.17
160 rdf:type schema:Person
161 sg:pub.10.1007/s13201-020-01218-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1127542145
162 https://doi.org/10.1007/s13201-020-01218-y
163 rdf:type schema:CreativeWork
164 sg:pub.10.1023/a:1005287510793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028075288
165 https://doi.org/10.1023/a:1005287510793
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.412960.8 schema:alternateName Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
168 schema:name Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...