Ontology type: schema:ScholarlyArticle Open Access: True
2022-05-13
AUTHORSNnanna Eke-emezie, Benjamin Rueben Etuk, Otobong Peter Akpan, Okechukwu Chibuzor Chinweoke
ABSTRACTThe continuous generation of waste resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong pH-dependent adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80 min and adsorbent dosage of 3.0 g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich–Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi^{2}$$\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich–Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856 mg.g−1. More... »
PAGES157
http://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3
DOIhttp://dx.doi.org/10.1007/s13201-022-01679-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147859695
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria",
"id": "http://www.grid.ac/institutes/grid.412960.8",
"name": [
"Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
],
"type": "Organization"
},
"familyName": "Eke-emezie",
"givenName": "Nnanna",
"id": "sg:person.013664501333.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664501333.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria",
"id": "http://www.grid.ac/institutes/grid.412960.8",
"name": [
"Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
],
"type": "Organization"
},
"familyName": "Etuk",
"givenName": "Benjamin Rueben",
"id": "sg:person.014462061733.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462061733.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria",
"id": "http://www.grid.ac/institutes/grid.412960.8",
"name": [
"Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
],
"type": "Organization"
},
"familyName": "Akpan",
"givenName": "Otobong Peter",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria",
"id": "http://www.grid.ac/institutes/grid.412960.8",
"name": [
"Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
],
"type": "Organization"
},
"familyName": "Chinweoke",
"givenName": "Okechukwu Chibuzor",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1005287510793",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028075288",
"https://doi.org/10.1023/a:1005287510793"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13201-020-01218-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1127542145",
"https://doi.org/10.1007/s13201-020-01218-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-05-13",
"datePublishedReg": "2022-05-13",
"description": "The continuous generation of waste\u00a0resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong\u00a0pH-dependent adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80\u00a0min and adsorbent dosage of 3.0\u00a0g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich\u2013Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (\u03c72\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\chi^{2}$$\\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich\u2013Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856\u00a0mg.g\u22121.",
"genre": "article",
"id": "sg:pub.10.1007/s13201-022-01679-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1051421",
"issn": [
"2190-5487",
"2190-5495"
],
"name": "Applied Water Science",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"adsorption process",
"cyanide removal",
"adsorbent dosage",
"cassava wastewater",
"pseudo-second order kinetic model",
"Redlich-Peterson",
"removal of cyanide",
"dominant adsorption process",
"mono-layer adsorption",
"kinetic model",
"equilibrium data analysis",
"Elovich kinetic models",
"monolayer adsorption capacity",
"liquid waste",
"isotherm model",
"adsorption capacity",
"batch studies",
"Langmuir model",
"shell carbon",
"contact time",
"equilibrium time",
"processing mills",
"fit isotherm model",
"experimental data",
"wastewater",
"error deviation",
"cassava processing mill",
"waste",
"nonlinear regression analysis",
"continuous generation",
"batch procedure",
"square error",
"different cyanide concentrations",
"cyanide concentration",
"coefficient of determination",
"H3PO4",
"influence of variables",
"kinetic data",
"removal",
"industrial activities",
"carbon",
"Elovich",
"Freundlich",
"process",
"Langmuir",
"mill",
"adsorption",
"model",
"chemisorption",
"coefficient",
"pseudo",
"error",
"generation",
"influence",
"time",
"analysis",
"capacity",
"dosage",
"deviation",
"preparation",
"results",
"min",
"determination",
"concentration",
"cyanide",
"data",
"procedure",
"use",
"APSC",
"study",
"rise",
"sum",
"variables",
"data analysis",
"concern",
"percentage",
"high percentage",
"experimental model",
"major cause",
"activity",
"cause",
"countries",
"regression analysis",
"humans",
"Chi-square"
],
"name": "Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon",
"pagination": "157",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147859695"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13201-022-01679-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13201-022-01679-3",
"https://app.dimensions.ai/details/publication/pub.1147859695"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_932.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13201-022-01679-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'
This table displays all metadata directly associated to this object as RDF triples.
170 TRIPLES
22 PREDICATES
112 URIs
102 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s13201-022-01679-3 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0904 |
3 | ″ | schema:author | N06a6ead649964951a4d55ec63a95f790 |
4 | ″ | schema:citation | sg:pub.10.1007/s13201-020-01218-y |
5 | ″ | ″ | sg:pub.10.1023/a:1005287510793 |
6 | ″ | schema:datePublished | 2022-05-13 |
7 | ″ | schema:datePublishedReg | 2022-05-13 |
8 | ″ | schema:description | The continuous generation of waste resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong pH-dependent adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80 min and adsorbent dosage of 3.0 g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich–Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi^{2}$$\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich–Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856 mg.g−1. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N711efbae9ed64879a926a8895f99cb62 |
13 | ″ | ″ | Na32e933d800347feaa079bb7b6836633 |
14 | ″ | ″ | sg:journal.1051421 |
15 | ″ | schema:keywords | APSC |
16 | ″ | ″ | Chi-square |
17 | ″ | ″ | Elovich |
18 | ″ | ″ | Elovich kinetic models |
19 | ″ | ″ | Freundlich |
20 | ″ | ″ | H3PO4 |
21 | ″ | ″ | Langmuir |
22 | ″ | ″ | Langmuir model |
23 | ″ | ″ | Redlich-Peterson |
24 | ″ | ″ | activity |
25 | ″ | ″ | adsorbent dosage |
26 | ″ | ″ | adsorption |
27 | ″ | ″ | adsorption capacity |
28 | ″ | ″ | adsorption process |
29 | ″ | ″ | analysis |
30 | ″ | ″ | batch procedure |
31 | ″ | ″ | batch studies |
32 | ″ | ″ | capacity |
33 | ″ | ″ | carbon |
34 | ″ | ″ | cassava processing mill |
35 | ″ | ″ | cassava wastewater |
36 | ″ | ″ | cause |
37 | ″ | ″ | chemisorption |
38 | ″ | ″ | coefficient |
39 | ″ | ″ | coefficient of determination |
40 | ″ | ″ | concentration |
41 | ″ | ″ | concern |
42 | ″ | ″ | contact time |
43 | ″ | ″ | continuous generation |
44 | ″ | ″ | countries |
45 | ″ | ″ | cyanide |
46 | ″ | ″ | cyanide concentration |
47 | ″ | ″ | cyanide removal |
48 | ″ | ″ | data |
49 | ″ | ″ | data analysis |
50 | ″ | ″ | determination |
51 | ″ | ″ | deviation |
52 | ″ | ″ | different cyanide concentrations |
53 | ″ | ″ | dominant adsorption process |
54 | ″ | ″ | dosage |
55 | ″ | ″ | equilibrium data analysis |
56 | ″ | ″ | equilibrium time |
57 | ″ | ″ | error |
58 | ″ | ″ | error deviation |
59 | ″ | ″ | experimental data |
60 | ″ | ″ | experimental model |
61 | ″ | ″ | fit isotherm model |
62 | ″ | ″ | generation |
63 | ″ | ″ | high percentage |
64 | ″ | ″ | humans |
65 | ″ | ″ | industrial activities |
66 | ″ | ″ | influence |
67 | ″ | ″ | influence of variables |
68 | ″ | ″ | isotherm model |
69 | ″ | ″ | kinetic data |
70 | ″ | ″ | kinetic model |
71 | ″ | ″ | liquid waste |
72 | ″ | ″ | major cause |
73 | ″ | ″ | mill |
74 | ″ | ″ | min |
75 | ″ | ″ | model |
76 | ″ | ″ | mono-layer adsorption |
77 | ″ | ″ | monolayer adsorption capacity |
78 | ″ | ″ | nonlinear regression analysis |
79 | ″ | ″ | percentage |
80 | ″ | ″ | preparation |
81 | ″ | ″ | procedure |
82 | ″ | ″ | process |
83 | ″ | ″ | processing mills |
84 | ″ | ″ | pseudo |
85 | ″ | ″ | pseudo-second order kinetic model |
86 | ″ | ″ | regression analysis |
87 | ″ | ″ | removal |
88 | ″ | ″ | removal of cyanide |
89 | ″ | ″ | results |
90 | ″ | ″ | rise |
91 | ″ | ″ | shell carbon |
92 | ″ | ″ | square error |
93 | ″ | ″ | study |
94 | ″ | ″ | sum |
95 | ″ | ″ | time |
96 | ″ | ″ | use |
97 | ″ | ″ | variables |
98 | ″ | ″ | waste |
99 | ″ | ″ | wastewater |
100 | ″ | schema:name | Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon |
101 | ″ | schema:pagination | 157 |
102 | ″ | schema:productId | N5e00aa392b0f419f859116d92acc1627 |
103 | ″ | ″ | Nae7bfed598b14f23998607a72d0d1f2b |
104 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1147859695 |
105 | ″ | ″ | https://doi.org/10.1007/s13201-022-01679-3 |
106 | ″ | schema:sdDatePublished | 2022-06-01T22:24 |
107 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
108 | ″ | schema:sdPublisher | N252f0f1ef9464372b1d5a0028b924b87 |
109 | ″ | schema:url | https://doi.org/10.1007/s13201-022-01679-3 |
110 | ″ | sgo:license | sg:explorer/license/ |
111 | ″ | sgo:sdDataset | articles |
112 | ″ | rdf:type | schema:ScholarlyArticle |
113 | N06a6ead649964951a4d55ec63a95f790 | rdf:first | sg:person.013664501333.29 |
114 | ″ | rdf:rest | N0fc6c3d426fa4aee8696c8d96bcea23d |
115 | N0fc6c3d426fa4aee8696c8d96bcea23d | rdf:first | sg:person.014462061733.17 |
116 | ″ | rdf:rest | Nb5fc9ef115ac446fa5cfd2be30fbfe5d |
117 | N252f0f1ef9464372b1d5a0028b924b87 | schema:name | Springer Nature - SN SciGraph project |
118 | ″ | rdf:type | schema:Organization |
119 | N5e00aa392b0f419f859116d92acc1627 | schema:name | doi |
120 | ″ | schema:value | 10.1007/s13201-022-01679-3 |
121 | ″ | rdf:type | schema:PropertyValue |
122 | N711efbae9ed64879a926a8895f99cb62 | schema:volumeNumber | 12 |
123 | ″ | rdf:type | schema:PublicationVolume |
124 | N8b928f587d2c41ffbcbbe7f6c4e47d33 | schema:affiliation | grid-institutes:grid.412960.8 |
125 | ″ | schema:familyName | Chinweoke |
126 | ″ | schema:givenName | Okechukwu Chibuzor |
127 | ″ | rdf:type | schema:Person |
128 | N97f0e970c1f44f1c88a3899615036e3d | schema:affiliation | grid-institutes:grid.412960.8 |
129 | ″ | schema:familyName | Akpan |
130 | ″ | schema:givenName | Otobong Peter |
131 | ″ | rdf:type | schema:Person |
132 | Na32e933d800347feaa079bb7b6836633 | schema:issueNumber | 7 |
133 | ″ | rdf:type | schema:PublicationIssue |
134 | Nae7bfed598b14f23998607a72d0d1f2b | schema:name | dimensions_id |
135 | ″ | schema:value | pub.1147859695 |
136 | ″ | rdf:type | schema:PropertyValue |
137 | Nafa1873fa2c74d7696255fb4fc09a63b | rdf:first | N8b928f587d2c41ffbcbbe7f6c4e47d33 |
138 | ″ | rdf:rest | rdf:nil |
139 | Nb5fc9ef115ac446fa5cfd2be30fbfe5d | rdf:first | N97f0e970c1f44f1c88a3899615036e3d |
140 | ″ | rdf:rest | Nafa1873fa2c74d7696255fb4fc09a63b |
141 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
142 | ″ | schema:name | Engineering |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
145 | ″ | schema:name | Chemical Engineering |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | sg:journal.1051421 | schema:issn | 2190-5487 |
148 | ″ | ″ | 2190-5495 |
149 | ″ | schema:name | Applied Water Science |
150 | ″ | schema:publisher | Springer Nature |
151 | ″ | rdf:type | schema:Periodical |
152 | sg:person.013664501333.29 | schema:affiliation | grid-institutes:grid.412960.8 |
153 | ″ | schema:familyName | Eke-emezie |
154 | ″ | schema:givenName | Nnanna |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664501333.29 |
156 | ″ | rdf:type | schema:Person |
157 | sg:person.014462061733.17 | schema:affiliation | grid-institutes:grid.412960.8 |
158 | ″ | schema:familyName | Etuk |
159 | ″ | schema:givenName | Benjamin Rueben |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462061733.17 |
161 | ″ | rdf:type | schema:Person |
162 | sg:pub.10.1007/s13201-020-01218-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1127542145 |
163 | ″ | ″ | https://doi.org/10.1007/s13201-020-01218-y |
164 | ″ | rdf:type | schema:CreativeWork |
165 | sg:pub.10.1023/a:1005287510793 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028075288 |
166 | ″ | ″ | https://doi.org/10.1023/a:1005287510793 |
167 | ″ | rdf:type | schema:CreativeWork |
168 | grid-institutes:grid.412960.8 | schema:alternateName | Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria |
169 | ″ | schema:name | Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria |
170 | ″ | rdf:type | schema:Organization |