Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-13

AUTHORS

Nnanna Eke-emezie, Benjamin Rueben Etuk, Otobong Peter Akpan, Okechukwu Chibuzor Chinweoke

ABSTRACT

The continuous generation of waste resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong pH-dependent adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80 min and adsorbent dosage of 3.0 g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich–Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi^{2}$$\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich–Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856 mg.g−1. More... »

PAGES

157

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3

DOI

http://dx.doi.org/10.1007/s13201-022-01679-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147859695


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eke-emezie", 
        "givenName": "Nnanna", 
        "id": "sg:person.013664501333.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664501333.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etuk", 
        "givenName": "Benjamin Rueben", 
        "id": "sg:person.014462061733.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462061733.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akpan", 
        "givenName": "Otobong Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.412960.8", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chinweoke", 
        "givenName": "Okechukwu Chibuzor", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005287510793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028075288", 
          "https://doi.org/10.1023/a:1005287510793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-020-01218-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127542145", 
          "https://doi.org/10.1007/s13201-020-01218-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-13", 
    "datePublishedReg": "2022-05-13", 
    "description": "The continuous generation of waste\u00a0resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong\u00a0pH-dependent  adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80\u00a0min and adsorbent dosage of 3.0\u00a0g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich\u2013Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (\u03c72\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\chi^{2}$$\\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich\u2013Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856\u00a0mg.g\u22121.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13201-022-01679-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051421", 
        "issn": [
          "2190-5487", 
          "2190-5495"
        ], 
        "name": "Applied Water Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "adsorption process", 
      "cyanide removal", 
      "adsorbent dosage", 
      "cassava wastewater", 
      "pseudo-second order kinetic model", 
      "Redlich-Peterson", 
      "removal of cyanide", 
      "dominant adsorption process", 
      "mono-layer adsorption", 
      "kinetic model", 
      "equilibrium data analysis", 
      "Elovich kinetic models", 
      "monolayer adsorption capacity", 
      "liquid waste", 
      "isotherm model", 
      "adsorption capacity", 
      "batch studies", 
      "Langmuir model", 
      "shell carbon", 
      "contact time", 
      "equilibrium time", 
      "processing mills", 
      "fit isotherm model", 
      "experimental data", 
      "wastewater", 
      "error deviation", 
      "cassava processing mill", 
      "waste", 
      "nonlinear regression analysis", 
      "continuous generation", 
      "batch procedure", 
      "square error", 
      "different cyanide concentrations", 
      "cyanide concentration", 
      "coefficient of determination", 
      "H3PO4", 
      "influence of variables", 
      "kinetic data", 
      "removal", 
      "industrial activities", 
      "carbon", 
      "Elovich", 
      "Freundlich", 
      "process", 
      "Langmuir", 
      "mill", 
      "adsorption", 
      "model", 
      "chemisorption", 
      "coefficient", 
      "pseudo", 
      "error", 
      "generation", 
      "influence", 
      "time", 
      "analysis", 
      "capacity", 
      "dosage", 
      "deviation", 
      "preparation", 
      "results", 
      "min", 
      "determination", 
      "concentration", 
      "cyanide", 
      "data", 
      "procedure", 
      "use", 
      "APSC", 
      "study", 
      "rise", 
      "sum", 
      "variables", 
      "data analysis", 
      "concern", 
      "percentage", 
      "high percentage", 
      "experimental model", 
      "major cause", 
      "activity", 
      "cause", 
      "countries", 
      "regression analysis", 
      "humans", 
      "Chi-square"
    ], 
    "name": "Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon", 
    "pagination": "157", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147859695"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13201-022-01679-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13201-022-01679-3", 
      "https://app.dimensions.ai/details/publication/pub.1147859695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_932.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13201-022-01679-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01679-3'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      112 URIs      102 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13201-022-01679-3 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N06a6ead649964951a4d55ec63a95f790
4 schema:citation sg:pub.10.1007/s13201-020-01218-y
5 sg:pub.10.1023/a:1005287510793
6 schema:datePublished 2022-05-13
7 schema:datePublishedReg 2022-05-13
8 schema:description The continuous generation of waste resulting from the industrial activities of humans has significantly been on the rise, especially liquid wastes emanating from cassava processing mills, which is a major cause for concern in developing countries. This study focused on the preparation of H3PO4 activated periwinkle carbon (APSC) and use in the removal of cyanide in cassava wastewater. The influence of variables such as pH, adsorbent dosage, contact time, and different cyanide concentrations was investigated in batch procedures. Results from the batch studies reveal a strong pH-dependent adsorption process with optimum cyanide removal occurring at pH 8. An equilibrium time of 80 min and adsorbent dosage of 3.0 g gave the highest percentage of cyanide adsorbed at 83.93%. The Pseudo-first-order, Pseudo-second-order, and Elovich kinetic models were used for the analysis of experimental data while equilibrium data analysis using Langmuir, Freundlich, and Redlich–Peterson was carried out to determine the best-fit isotherm model. The Coefficient of determination (r2), Sum of square error (SSE), and Chi-square (χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi^{2}$$\end{document}) were used to estimate the error deviations between the predicted and the experimental models using nonlinear regression analysis to determine models that best explain the adsorption process. Kinetic data fitted well to the Elovich and Pseudo-second-order kinetic model which implies chemisorption as the dominant adsorption process. The Redlich–Peterson and Langmuir model best describes the adsorption process suggesting mono-layer adsorption with the monolayer adsorption capacity of APSC found to be 2.856 mg.g−1.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N711efbae9ed64879a926a8895f99cb62
13 Na32e933d800347feaa079bb7b6836633
14 sg:journal.1051421
15 schema:keywords APSC
16 Chi-square
17 Elovich
18 Elovich kinetic models
19 Freundlich
20 H3PO4
21 Langmuir
22 Langmuir model
23 Redlich-Peterson
24 activity
25 adsorbent dosage
26 adsorption
27 adsorption capacity
28 adsorption process
29 analysis
30 batch procedure
31 batch studies
32 capacity
33 carbon
34 cassava processing mill
35 cassava wastewater
36 cause
37 chemisorption
38 coefficient
39 coefficient of determination
40 concentration
41 concern
42 contact time
43 continuous generation
44 countries
45 cyanide
46 cyanide concentration
47 cyanide removal
48 data
49 data analysis
50 determination
51 deviation
52 different cyanide concentrations
53 dominant adsorption process
54 dosage
55 equilibrium data analysis
56 equilibrium time
57 error
58 error deviation
59 experimental data
60 experimental model
61 fit isotherm model
62 generation
63 high percentage
64 humans
65 industrial activities
66 influence
67 influence of variables
68 isotherm model
69 kinetic data
70 kinetic model
71 liquid waste
72 major cause
73 mill
74 min
75 model
76 mono-layer adsorption
77 monolayer adsorption capacity
78 nonlinear regression analysis
79 percentage
80 preparation
81 procedure
82 process
83 processing mills
84 pseudo
85 pseudo-second order kinetic model
86 regression analysis
87 removal
88 removal of cyanide
89 results
90 rise
91 shell carbon
92 square error
93 study
94 sum
95 time
96 use
97 variables
98 waste
99 wastewater
100 schema:name Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon
101 schema:pagination 157
102 schema:productId N5e00aa392b0f419f859116d92acc1627
103 Nae7bfed598b14f23998607a72d0d1f2b
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147859695
105 https://doi.org/10.1007/s13201-022-01679-3
106 schema:sdDatePublished 2022-06-01T22:24
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N252f0f1ef9464372b1d5a0028b924b87
109 schema:url https://doi.org/10.1007/s13201-022-01679-3
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N06a6ead649964951a4d55ec63a95f790 rdf:first sg:person.013664501333.29
114 rdf:rest N0fc6c3d426fa4aee8696c8d96bcea23d
115 N0fc6c3d426fa4aee8696c8d96bcea23d rdf:first sg:person.014462061733.17
116 rdf:rest Nb5fc9ef115ac446fa5cfd2be30fbfe5d
117 N252f0f1ef9464372b1d5a0028b924b87 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N5e00aa392b0f419f859116d92acc1627 schema:name doi
120 schema:value 10.1007/s13201-022-01679-3
121 rdf:type schema:PropertyValue
122 N711efbae9ed64879a926a8895f99cb62 schema:volumeNumber 12
123 rdf:type schema:PublicationVolume
124 N8b928f587d2c41ffbcbbe7f6c4e47d33 schema:affiliation grid-institutes:grid.412960.8
125 schema:familyName Chinweoke
126 schema:givenName Okechukwu Chibuzor
127 rdf:type schema:Person
128 N97f0e970c1f44f1c88a3899615036e3d schema:affiliation grid-institutes:grid.412960.8
129 schema:familyName Akpan
130 schema:givenName Otobong Peter
131 rdf:type schema:Person
132 Na32e933d800347feaa079bb7b6836633 schema:issueNumber 7
133 rdf:type schema:PublicationIssue
134 Nae7bfed598b14f23998607a72d0d1f2b schema:name dimensions_id
135 schema:value pub.1147859695
136 rdf:type schema:PropertyValue
137 Nafa1873fa2c74d7696255fb4fc09a63b rdf:first N8b928f587d2c41ffbcbbe7f6c4e47d33
138 rdf:rest rdf:nil
139 Nb5fc9ef115ac446fa5cfd2be30fbfe5d rdf:first N97f0e970c1f44f1c88a3899615036e3d
140 rdf:rest Nafa1873fa2c74d7696255fb4fc09a63b
141 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
142 schema:name Engineering
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
145 schema:name Chemical Engineering
146 rdf:type schema:DefinedTerm
147 sg:journal.1051421 schema:issn 2190-5487
148 2190-5495
149 schema:name Applied Water Science
150 schema:publisher Springer Nature
151 rdf:type schema:Periodical
152 sg:person.013664501333.29 schema:affiliation grid-institutes:grid.412960.8
153 schema:familyName Eke-emezie
154 schema:givenName Nnanna
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664501333.29
156 rdf:type schema:Person
157 sg:person.014462061733.17 schema:affiliation grid-institutes:grid.412960.8
158 schema:familyName Etuk
159 schema:givenName Benjamin Rueben
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462061733.17
161 rdf:type schema:Person
162 sg:pub.10.1007/s13201-020-01218-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1127542145
163 https://doi.org/10.1007/s13201-020-01218-y
164 rdf:type schema:CreativeWork
165 sg:pub.10.1023/a:1005287510793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028075288
166 https://doi.org/10.1023/a:1005287510793
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.412960.8 schema:alternateName Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
169 schema:name Department of Chemical and Petroleum Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...