Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-25

AUTHORS

Sakram Gugulothu, N. Subbarao, Rashmirekha Das, Ratnakar Dhakate

ABSTRACT

The objective of the present study was to evaluate the geochemical processes controlling the groundwater chemistry and also to assess the groundwater quality suitability criteria for irrigation purposes. An agricultural region of Telangana, South India, was selected for the present study. A total of 100 groundwater samples were collected and estimated for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}), chloride (Cl−), sulfate (SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}), nitrate (NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document}), and fluoride (F−). The groundwater was characterized by mostly alkaline conditions with a dominance of Na+ and HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} ions, indicating the prevailing conditions of weathering and dissolution of silicate minerals. The various geochemical signatures such as Na+ vs Cl−, Ca2+ + Mg2+ vs HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}, Ca2+ + Mg2+ vs HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} + SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}, HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} vs Cl− + SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}, Ca2+ + Mg2+ vs total cations, and Ca2+ + Mg2+ vs Na+ + K+ and the saturation indices with respect to calcite, halite, and gypsum suggest obviously the dominant conditions of carbonate weathering associated with the reverse ion exchange and evaporation processes as the geogenic factors. The linear trend of TDS vs NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} + Cl−/HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} clearly specifies the influence of non-geogenic sources on the aquifer system. These are the important contributors to the variation in the groundwater chemistry. However, the impact of the geogenic source is masking the influence of the anthropogenic source in some areas of the present study region. According to the salinity vs sodium adsorption ratio, residual sodium carbonate, magnesium ratio, and Kelly ratio, 99.9%, 7.06%, 63.07%, and 51.27% of the total study region come under the unsuitable categories for irrigation purposes, respectively. Therefore, the findings of this study recommended some site-specific appropriate management strategies for the safe supply of groundwater for proper crop growth and consequently for sustainable development of the rural environment. More... »

PAGES

142

References to SciGraph publications

  • 2017-08-07. Assessment of agricultural groundwater users in Iran: a cultural environmental bias in HYDROGEOLOGY JOURNAL
  • 2015-09-22. Groundwater Characteristics and Pollution Assessment Using Integrated Hydrochemical Investigations GIS and Multivariate Geostatistical Techniques in Arid Areas in WATER RESOURCES MANAGEMENT
  • 2001-11-14. Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India in ENVIRONMENTAL GEOLOGY
  • 2018-05-09. Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas) in ENVIRONMENTAL EARTH SCIENCES
  • 2017-02-28. Hydrochemistry of groundwater in North Rajasthan, India: chemical and multivariate analysis in ENVIRONMENTAL EARTH SCIENCES
  • 2020-11-24. Seasonal and Spatial Variation of Groundwater Quality Vulnerable Zones of Yellareddygudem Watershed, Nalgonda District, Telangana State, India in ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
  • 2018-02-02. Groundwater quality from a part of Prakasam District, Andhra Pradesh, India in APPLIED WATER SCIENCE
  • 2018-08-14. Hydrogeochemical characterization and assessment of water suitability for drinking and irrigation in crystalline rocks of Mothkur region, Telangana State, South India in APPLIED WATER SCIENCE
  • 2015-12-08. Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China in ARABIAN JOURNAL OF GEOSCIENCES
  • 2016-02-25. Major Ion Chemistry and Quality Assessment of Groundwater in and Around a Mountainous Tourist Town of China in EXPOSURE AND HEALTH
  • 2019-11-23. Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India in ENVIRONMENTAL GEOCHEMISTRY AND HEALTH
  • 2020-02-24. Chemical weathering and atmospheric carbon dioxide (CO2) consumption in Shanmuganadhi, South India: evidences from groundwater geochemistry in ENVIRONMENTAL GEOCHEMISTRY AND HEALTH
  • 2017-05-20. Groundwater chemistry evaluation for drinking and irrigation utilities in east Wasit province, Central Iraq in APPLIED WATER SCIENCE
  • 2009-12-05. Major ion chemistry of groundwater in a river basin: a study from India in ENVIRONMENTAL EARTH SCIENCES
  • 2012-02-19. Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India in ENVIRONMENTAL EARTH SCIENCES
  • 2011-09-21. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2016-01-30. Hydrogeochemical Characterization of Groundwater in and Around a Wastewater Irrigated Forest in the Southeastern Edge of the Tengger Desert, Northwest China in EXPOSURE AND HEALTH
  • 2013-07-06. Major Ion Chemistry of Shallow Groundwater in the Dongsheng Coalfield, Ordos Basin, China in MINE WATER AND THE ENVIRONMENT
  • 2014-08-07. Groundwater Chemistry and Quality in an Intensively Cultivated River Delta in EXPOSURE AND HEALTH
  • 2020-10-21. Irrigation risk assessment of groundwater in a non-perennial river basin of South India: implication from irrigation water quality index (IWQI) and geographical information system (GIS) approaches in ARABIAN JOURNAL OF GEOSCIENCES
  • 2021-02-22. Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2014-06-12. Spatial control of groundwater contamination, using principal component analysis in JOURNAL OF EARTH SYSTEM SCIENCE
  • 2014-08-06. Assessment of the Contribution of N-Fertilizers to Nitrate Pollution of Groundwater in Western Iran (Case Study: Ghorveh–Dehgelan Aquifer) in EXPOSURE AND HEALTH
  • 2017-02-22. Hydrochemical characteristics of groundwater and surface water for domestic and irrigation purposes in Vea catchment, Northern Ghana in ENVIRONMENTAL EARTH SCIENCES
  • 2017-11-01. Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India in ENVIRONMENTAL EARTH SCIENCES
  • 2018-06-22. Multivariate statistical approach for the assessment of fluoride and nitrate concentration in groundwater from Zaheerabad area, Telangana State, India in SUSTAINABLE WATER RESOURCES MANAGEMENT
  • 2020-01-11. Groundwater quality evaluation for different uses in the lower Ketar Watershed, Ethiopia in ENVIRONMENTAL GEOCHEMISTRY AND HEALTH
  • 2007-06-13. Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2018-12-28. Influence of hydro-geochemical processes on groundwater quality through geostatistical techniques in Kadava River basin, Western India in ARABIAN JOURNAL OF GEOSCIENCES
  • 2019-03-12. Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur, India in ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY
  • 2013-09-03. Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia) in ENVIRONMENTAL EARTH SCIENCES
  • 2020-11-24. Spatial assessment of major ion geochemistry in the groundwater around Suryapet Region, Southern Telangana, India in ENVIRONMENTAL SUSTAINABILITY
  • 2016-04-25. Assessment of groundwater quality for irrigation and drinking purposes and identification of hydrogeochemical mechanisms evolution in Northeastern, Tunisia in ENVIRONMENTAL EARTH SCIENCES
  • 2015-06-19. Identification of controlling processes of groundwater quality in a developing urban area using principal component analysis in ENVIRONMENTAL EARTH SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13201-022-01583-w

    DOI

    http://dx.doi.org/10.1007/s13201-022-01583-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147350698


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CSIR-National Geophysical Research Institute, 500 007, Hyderabad, Telangana, India", 
              "id": "http://www.grid.ac/institutes/grid.419382.5", 
              "name": [
                "CSIR-National Geophysical Research Institute, 500 007, Hyderabad, Telangana, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gugulothu", 
            "givenName": "Sakram", 
            "id": "sg:person.013341267105.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013341267105.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geology, Andhra University, 530 003, Visakhapatnam, Andhra Pradesh, India", 
              "id": "http://www.grid.ac/institutes/grid.411381.e", 
              "name": [
                "Department of Geology, Andhra University, 530 003, Visakhapatnam, Andhra Pradesh, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Subbarao", 
            "givenName": "N.", 
            "id": "sg:person.07645643412.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645643412.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geology, Utkal University, 751 004, Bhubaneswar, Odisha, India", 
              "id": "http://www.grid.ac/institutes/grid.412779.e", 
              "name": [
                "Department of Geology, Utkal University, 751 004, Bhubaneswar, Odisha, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Das", 
            "givenName": "Rashmirekha", 
            "id": "sg:person.010443224012.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443224012.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIR-National Geophysical Research Institute, 500 007, Hyderabad, Telangana, India", 
              "id": "http://www.grid.ac/institutes/grid.419382.5", 
              "name": [
                "CSIR-National Geophysical Research Institute, 500 007, Hyderabad, Telangana, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dhakate", 
            "givenName": "Ratnakar", 
            "id": "sg:person.016664334626.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016664334626.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002540100431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028619894", 
              "https://doi.org/10.1007/s002540100431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13201-018-0787-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106158873", 
              "https://doi.org/10.1007/s13201-018-0787-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-013-2729-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047467801", 
              "https://doi.org/10.1007/s12665-013-2729-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-012-1590-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043063211", 
              "https://doi.org/10.1007/s12665-012-1590-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-2059-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006707101", 
              "https://doi.org/10.1007/s12517-015-2059-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-015-4616-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048451603", 
              "https://doi.org/10.1007/s12665-015-4616-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13201-017-0575-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085454663", 
              "https://doi.org/10.1007/s13201-017-0575-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12403-016-0198-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040679856", 
              "https://doi.org/10.1007/s12403-016-0198-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10230-013-0234-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001556808", 
              "https://doi.org/10.1007/s10230-013-0234-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12403-016-0193-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021545304", 
              "https://doi.org/10.1007/s12403-016-0193-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40899-018-0258-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105068490", 
              "https://doi.org/10.1007/s40899-018-0258-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-017-6490-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083913890", 
              "https://doi.org/10.1007/s12665-017-6490-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-015-1136-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043096789", 
              "https://doi.org/10.1007/s11269-015-1136-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10040-017-1634-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091082369", 
              "https://doi.org/10.1007/s10040-017-1634-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s42398-020-00148-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132897604", 
              "https://doi.org/10.1007/s42398-020-00148-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-017-6496-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084036175", 
              "https://doi.org/10.1007/s12665-017-6496-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12040-014-0430-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005029841", 
              "https://doi.org/10.1007/s12040-014-0430-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-007-9801-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044635593", 
              "https://doi.org/10.1007/s10661-007-9801-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-021-12404-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135646962", 
              "https://doi.org/10.1007/s11356-021-12404-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-009-0389-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053132460", 
              "https://doi.org/10.1007/s12665-009-0389-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-018-4136-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110953332", 
              "https://doi.org/10.1007/s12517-018-4136-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12403-014-0133-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036938994", 
              "https://doi.org/10.1007/s12403-014-0133-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-017-7093-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092476987", 
              "https://doi.org/10.1007/s12665-017-7093-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12403-014-0135-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033211777", 
              "https://doi.org/10.1007/s12403-014-0135-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00244-020-00783-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132894106", 
              "https://doi.org/10.1007/s00244-020-00783-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10653-019-00508-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124007603", 
              "https://doi.org/10.1007/s10653-019-00508-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-011-2333-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005197369", 
              "https://doi.org/10.1007/s10661-011-2333-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-018-7523-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103882220", 
              "https://doi.org/10.1007/s12665-018-7523-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-5441-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032010745", 
              "https://doi.org/10.1007/s12665-016-5441-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10653-019-00478-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122808097", 
              "https://doi.org/10.1007/s10653-019-00478-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-020-06103-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131961441", 
              "https://doi.org/10.1007/s12517-020-06103-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10653-020-00540-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125096762", 
              "https://doi.org/10.1007/s10653-020-00540-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10668-019-00342-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112703209", 
              "https://doi.org/10.1007/s10668-019-00342-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13201-018-0665-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100768678", 
              "https://doi.org/10.1007/s13201-018-0665-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-25", 
        "datePublishedReg": "2022-04-25", 
        "description": "The objective of the present study was to evaluate the geochemical processes controlling the groundwater chemistry and also to assess the groundwater quality suitability criteria for irrigation purposes. An agricultural region of Telangana, South India, was selected for the present study. A total of 100 groundwater samples were collected and estimated for pH, electrical conductivity\u00a0(EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{HCO}}_{3}^{ - }$$\\end{document}), chloride (Cl\u2212), sulfate (SO42-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{SO}}_{4}^{2 - }$$\\end{document}), nitrate (NO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{NO}}_{3}^{ - }$$\\end{document}), and fluoride (F\u2212). The groundwater was characterized by mostly alkaline conditions with a dominance of Na+ and HCO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{HCO}}_{3}^{ - }$$\\end{document} ions, indicating the prevailing conditions of weathering and dissolution of silicate minerals. The various geochemical signatures such as Na+ vs Cl\u2212, Ca2+ \u2009+\u2009Mg2+ vs HCO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{HCO}}_{3}^{ - }$$\\end{document}, Ca2+ \u2009+\u2009Mg2+ vs HCO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{HCO}}_{3}^{ - }$$\\end{document}\u2009+\u2009SO42-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{SO}}_{4}^{2 - }$$\\end{document}, HCO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{HCO}}_{3}^{ - }$$\\end{document} vs Cl\u2212\u2009+\u2009SO42-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{SO}}_{4}^{2 - }$$\\end{document}, Ca2+ \u2009+\u2009Mg2+ vs total cations, and Ca2+ \u2009+\u2009Mg2+ vs Na+ \u2009+\u2009K+ and the saturation indices with respect to calcite, halite, and gypsum suggest obviously the dominant conditions of carbonate weathering associated with the reverse ion exchange and evaporation processes as the geogenic factors. The linear trend of TDS vs NO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{NO}}_{3}^{ - }$$\\end{document}\u2009+\u2009Cl\u2212/HCO3-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{HCO}}_{3}^{ - }$$\\end{document} clearly\u00a0 specifies the influence of non-geogenic sources on the aquifer system. These are the important contributors to the variation in the groundwater chemistry. However, the impact of the geogenic source is masking the influence of the anthropogenic source in some areas of the present study region. According to the salinity vs sodium adsorption ratio, residual sodium carbonate, magnesium ratio, and Kelly ratio, 99.9%, 7.06%, 63.07%, and 51.27% of the total study region come under the unsuitable categories for irrigation purposes, respectively. Therefore, the findings of this study recommended some site-specific appropriate management strategies for the safe supply of groundwater for proper crop growth and consequently for sustainable development of the rural environment.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13201-022-01583-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1051421", 
            "issn": [
              "2190-5487", 
              "2190-5495"
            ], 
            "name": "Applied Water Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "total dissolved solids", 
          "irrigation purposes", 
          "groundwater chemistry", 
          "study region", 
          "agricultural regions", 
          "residual sodium carbonate", 
          "reverse ion exchange", 
          "conditions of weathering", 
          "present study region", 
          "sodium adsorption ratio", 
          "geochemical signatures", 
          "carbonate weathering", 
          "geochemical processes", 
          "geochemical evaluation", 
          "Kelly\u2019s ratio", 
          "aquifer system", 
          "unsuitable category", 
          "geogenic factors", 
          "groundwater samples", 
          "geogenic sources", 
          "groundwater quality", 
          "silicate minerals", 
          "anthropogenic sources", 
          "total cations", 
          "dissolved solids", 
          "adsorption ratio", 
          "groundwater", 
          "South India", 
          "magnesium ratio", 
          "linear trend", 
          "HCO3", 
          "weathering", 
          "SO42", 
          "electrical conductivity", 
          "sodium carbonate", 
          "evaporation process", 
          "region", 
          "important contributor", 
          "calcite", 
          "crop growth", 
          "chemistry", 
          "appropriate management strategies", 
          "source", 
          "minerals", 
          "salinity", 
          "carbonate", 
          "gypsum", 
          "India", 
          "ion exchange", 
          "Mg2", 
          "dissolution", 
          "NO3", 
          "safe supply", 
          "signatures", 
          "management strategies", 
          "rural environment", 
          "nitrate", 
          "variation", 
          "dominance", 
          "ratio", 
          "trends", 
          "Telangana", 
          "conditions", 
          "area", 
          "alkaline conditions", 
          "sulfate", 
          "supply", 
          "sustainable development", 
          "influence", 
          "exchange", 
          "bicarbonate", 
          "contributor", 
          "saturation", 
          "process", 
          "environment", 
          "suitability criteria", 
          "impact", 
          "solids", 
          "conductivity", 
          "magnesium", 
          "samples", 
          "suitability", 
          "study", 
          "Ca2", 
          "potassium", 
          "present study", 
          "respect", 
          "fluoride", 
          "cations", 
          "system", 
          "sodium", 
          "quality", 
          "chloride", 
          "calcium", 
          "development", 
          "growth", 
          "factors", 
          "purpose", 
          "dominant condition", 
          "ions", 
          "evaluation", 
          "objective", 
          "categories", 
          "total", 
          "criteria", 
          "specifies", 
          "findings", 
          "strategies", 
          "proper crop growth"
        ], 
        "name": "Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India", 
        "pagination": "142", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147350698"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13201-022-01583-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13201-022-01583-w", 
          "https://app.dimensions.ai/details/publication/pub.1147350698"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_939.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13201-022-01583-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01583-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01583-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01583-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13201-022-01583-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    330 TRIPLES      22 PREDICATES      168 URIs      126 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13201-022-01583-w schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N85adf77410a74cba8e80cb2a0c297d42
    4 schema:citation sg:pub.10.1007/s00244-020-00783-2
    5 sg:pub.10.1007/s002540100431
    6 sg:pub.10.1007/s10040-017-1634-9
    7 sg:pub.10.1007/s10230-013-0234-8
    8 sg:pub.10.1007/s10653-019-00478-1
    9 sg:pub.10.1007/s10653-019-00508-y
    10 sg:pub.10.1007/s10653-020-00540-3
    11 sg:pub.10.1007/s10661-007-9801-4
    12 sg:pub.10.1007/s10661-011-2333-y
    13 sg:pub.10.1007/s10668-019-00342-3
    14 sg:pub.10.1007/s11269-015-1136-2
    15 sg:pub.10.1007/s11356-021-12404-z
    16 sg:pub.10.1007/s12040-014-0430-3
    17 sg:pub.10.1007/s12403-014-0133-7
    18 sg:pub.10.1007/s12403-014-0135-5
    19 sg:pub.10.1007/s12403-016-0193-y
    20 sg:pub.10.1007/s12403-016-0198-6
    21 sg:pub.10.1007/s12517-015-2059-1
    22 sg:pub.10.1007/s12517-018-4136-8
    23 sg:pub.10.1007/s12517-020-06103-1
    24 sg:pub.10.1007/s12665-009-0389-6
    25 sg:pub.10.1007/s12665-012-1590-6
    26 sg:pub.10.1007/s12665-013-2729-9
    27 sg:pub.10.1007/s12665-015-4616-z
    28 sg:pub.10.1007/s12665-016-5441-8
    29 sg:pub.10.1007/s12665-017-6490-3
    30 sg:pub.10.1007/s12665-017-6496-x
    31 sg:pub.10.1007/s12665-017-7093-8
    32 sg:pub.10.1007/s12665-018-7523-2
    33 sg:pub.10.1007/s13201-017-0575-8
    34 sg:pub.10.1007/s13201-018-0665-2
    35 sg:pub.10.1007/s13201-018-0787-6
    36 sg:pub.10.1007/s40899-018-0258-0
    37 sg:pub.10.1007/s42398-020-00148-4
    38 schema:datePublished 2022-04-25
    39 schema:datePublishedReg 2022-04-25
    40 schema:description The objective of the present study was to evaluate the geochemical processes controlling the groundwater chemistry and also to assess the groundwater quality suitability criteria for irrigation purposes. An agricultural region of Telangana, South India, was selected for the present study. A total of 100 groundwater samples were collected and estimated for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}), chloride (Cl−), sulfate (SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}), nitrate (NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document}), and fluoride (F−). The groundwater was characterized by mostly alkaline conditions with a dominance of Na+ and HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} ions, indicating the prevailing conditions of weathering and dissolution of silicate minerals. The various geochemical signatures such as Na+ vs Cl−, Ca2+  + Mg2+ vs HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}, Ca2+  + Mg2+ vs HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} + SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}, HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} vs Cl− + SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}, Ca2+  + Mg2+ vs total cations, and Ca2+  + Mg2+ vs Na+  + K+ and the saturation indices with respect to calcite, halite, and gypsum suggest obviously the dominant conditions of carbonate weathering associated with the reverse ion exchange and evaporation processes as the geogenic factors. The linear trend of TDS vs NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} + Cl−/HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document} clearly  specifies the influence of non-geogenic sources on the aquifer system. These are the important contributors to the variation in the groundwater chemistry. However, the impact of the geogenic source is masking the influence of the anthropogenic source in some areas of the present study region. According to the salinity vs sodium adsorption ratio, residual sodium carbonate, magnesium ratio, and Kelly ratio, 99.9%, 7.06%, 63.07%, and 51.27% of the total study region come under the unsuitable categories for irrigation purposes, respectively. Therefore, the findings of this study recommended some site-specific appropriate management strategies for the safe supply of groundwater for proper crop growth and consequently for sustainable development of the rural environment.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N0f6bd583568c41a29a83a5bfa0803450
    45 Ne6d4f3eb6de14193bcb2e148a8424225
    46 sg:journal.1051421
    47 schema:keywords Ca2
    48 HCO3
    49 India
    50 Kelly’s ratio
    51 Mg2
    52 NO3
    53 SO42
    54 South India
    55 Telangana
    56 adsorption ratio
    57 agricultural regions
    58 alkaline conditions
    59 anthropogenic sources
    60 appropriate management strategies
    61 aquifer system
    62 area
    63 bicarbonate
    64 calcite
    65 calcium
    66 carbonate
    67 carbonate weathering
    68 categories
    69 cations
    70 chemistry
    71 chloride
    72 conditions
    73 conditions of weathering
    74 conductivity
    75 contributor
    76 criteria
    77 crop growth
    78 development
    79 dissolution
    80 dissolved solids
    81 dominance
    82 dominant condition
    83 electrical conductivity
    84 environment
    85 evaluation
    86 evaporation process
    87 exchange
    88 factors
    89 findings
    90 fluoride
    91 geochemical evaluation
    92 geochemical processes
    93 geochemical signatures
    94 geogenic factors
    95 geogenic sources
    96 groundwater
    97 groundwater chemistry
    98 groundwater quality
    99 groundwater samples
    100 growth
    101 gypsum
    102 impact
    103 important contributor
    104 influence
    105 ion exchange
    106 ions
    107 irrigation purposes
    108 linear trend
    109 magnesium
    110 magnesium ratio
    111 management strategies
    112 minerals
    113 nitrate
    114 objective
    115 potassium
    116 present study
    117 present study region
    118 process
    119 proper crop growth
    120 purpose
    121 quality
    122 ratio
    123 region
    124 residual sodium carbonate
    125 respect
    126 reverse ion exchange
    127 rural environment
    128 safe supply
    129 salinity
    130 samples
    131 saturation
    132 signatures
    133 silicate minerals
    134 sodium
    135 sodium adsorption ratio
    136 sodium carbonate
    137 solids
    138 source
    139 specifies
    140 strategies
    141 study
    142 study region
    143 suitability
    144 suitability criteria
    145 sulfate
    146 supply
    147 sustainable development
    148 system
    149 total
    150 total cations
    151 total dissolved solids
    152 trends
    153 unsuitable category
    154 variation
    155 weathering
    156 schema:name Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India
    157 schema:pagination 142
    158 schema:productId N4a892acf1d394b23b43d71b40fff95a0
    159 N97fd587f08c6450ba81153e1f6bf0191
    160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147350698
    161 https://doi.org/10.1007/s13201-022-01583-w
    162 schema:sdDatePublished 2022-06-01T22:24
    163 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    164 schema:sdPublisher N5d6c9bb5711440d4be917cf7ecbadded
    165 schema:url https://doi.org/10.1007/s13201-022-01583-w
    166 sgo:license sg:explorer/license/
    167 sgo:sdDataset articles
    168 rdf:type schema:ScholarlyArticle
    169 N0f6bd583568c41a29a83a5bfa0803450 schema:volumeNumber 12
    170 rdf:type schema:PublicationVolume
    171 N4a892acf1d394b23b43d71b40fff95a0 schema:name doi
    172 schema:value 10.1007/s13201-022-01583-w
    173 rdf:type schema:PropertyValue
    174 N5d6c9bb5711440d4be917cf7ecbadded schema:name Springer Nature - SN SciGraph project
    175 rdf:type schema:Organization
    176 N77909e66c6734671962cd9c601788fe6 rdf:first sg:person.07645643412.08
    177 rdf:rest Nd5125363755e4598b3edfc834cf1de98
    178 N85adf77410a74cba8e80cb2a0c297d42 rdf:first sg:person.013341267105.13
    179 rdf:rest N77909e66c6734671962cd9c601788fe6
    180 N97fd587f08c6450ba81153e1f6bf0191 schema:name dimensions_id
    181 schema:value pub.1147350698
    182 rdf:type schema:PropertyValue
    183 Nd5125363755e4598b3edfc834cf1de98 rdf:first sg:person.010443224012.13
    184 rdf:rest Ned7e5d8fff114a4280a597606fe9f224
    185 Ne6d4f3eb6de14193bcb2e148a8424225 schema:issueNumber 6
    186 rdf:type schema:PublicationIssue
    187 Ned7e5d8fff114a4280a597606fe9f224 rdf:first sg:person.016664334626.74
    188 rdf:rest rdf:nil
    189 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Earth Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Physical Geography and Environmental Geoscience
    194 rdf:type schema:DefinedTerm
    195 sg:journal.1051421 schema:issn 2190-5487
    196 2190-5495
    197 schema:name Applied Water Science
    198 schema:publisher Springer Nature
    199 rdf:type schema:Periodical
    200 sg:person.010443224012.13 schema:affiliation grid-institutes:grid.412779.e
    201 schema:familyName Das
    202 schema:givenName Rashmirekha
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443224012.13
    204 rdf:type schema:Person
    205 sg:person.013341267105.13 schema:affiliation grid-institutes:grid.419382.5
    206 schema:familyName Gugulothu
    207 schema:givenName Sakram
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013341267105.13
    209 rdf:type schema:Person
    210 sg:person.016664334626.74 schema:affiliation grid-institutes:grid.419382.5
    211 schema:familyName Dhakate
    212 schema:givenName Ratnakar
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016664334626.74
    214 rdf:type schema:Person
    215 sg:person.07645643412.08 schema:affiliation grid-institutes:grid.411381.e
    216 schema:familyName Subbarao
    217 schema:givenName N.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645643412.08
    219 rdf:type schema:Person
    220 sg:pub.10.1007/s00244-020-00783-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132894106
    221 https://doi.org/10.1007/s00244-020-00783-2
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s002540100431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028619894
    224 https://doi.org/10.1007/s002540100431
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s10040-017-1634-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091082369
    227 https://doi.org/10.1007/s10040-017-1634-9
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s10230-013-0234-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001556808
    230 https://doi.org/10.1007/s10230-013-0234-8
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s10653-019-00478-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122808097
    233 https://doi.org/10.1007/s10653-019-00478-1
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s10653-019-00508-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1124007603
    236 https://doi.org/10.1007/s10653-019-00508-y
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s10653-020-00540-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125096762
    239 https://doi.org/10.1007/s10653-020-00540-3
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s10661-007-9801-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044635593
    242 https://doi.org/10.1007/s10661-007-9801-4
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s10661-011-2333-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005197369
    245 https://doi.org/10.1007/s10661-011-2333-y
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s10668-019-00342-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703209
    248 https://doi.org/10.1007/s10668-019-00342-3
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s11269-015-1136-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043096789
    251 https://doi.org/10.1007/s11269-015-1136-2
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s11356-021-12404-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1135646962
    254 https://doi.org/10.1007/s11356-021-12404-z
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s12040-014-0430-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005029841
    257 https://doi.org/10.1007/s12040-014-0430-3
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s12403-014-0133-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036938994
    260 https://doi.org/10.1007/s12403-014-0133-7
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s12403-014-0135-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033211777
    263 https://doi.org/10.1007/s12403-014-0135-5
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s12403-016-0193-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021545304
    266 https://doi.org/10.1007/s12403-016-0193-y
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s12403-016-0198-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040679856
    269 https://doi.org/10.1007/s12403-016-0198-6
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s12517-015-2059-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006707101
    272 https://doi.org/10.1007/s12517-015-2059-1
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s12517-018-4136-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110953332
    275 https://doi.org/10.1007/s12517-018-4136-8
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s12517-020-06103-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131961441
    278 https://doi.org/10.1007/s12517-020-06103-1
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s12665-009-0389-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132460
    281 https://doi.org/10.1007/s12665-009-0389-6
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s12665-012-1590-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043063211
    284 https://doi.org/10.1007/s12665-012-1590-6
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s12665-013-2729-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047467801
    287 https://doi.org/10.1007/s12665-013-2729-9
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1007/s12665-015-4616-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048451603
    290 https://doi.org/10.1007/s12665-015-4616-z
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1007/s12665-016-5441-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032010745
    293 https://doi.org/10.1007/s12665-016-5441-8
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1007/s12665-017-6490-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083913890
    296 https://doi.org/10.1007/s12665-017-6490-3
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1007/s12665-017-6496-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084036175
    299 https://doi.org/10.1007/s12665-017-6496-x
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1007/s12665-017-7093-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092476987
    302 https://doi.org/10.1007/s12665-017-7093-8
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1007/s12665-018-7523-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103882220
    305 https://doi.org/10.1007/s12665-018-7523-2
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1007/s13201-017-0575-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085454663
    308 https://doi.org/10.1007/s13201-017-0575-8
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1007/s13201-018-0665-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100768678
    311 https://doi.org/10.1007/s13201-018-0665-2
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1007/s13201-018-0787-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106158873
    314 https://doi.org/10.1007/s13201-018-0787-6
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1007/s40899-018-0258-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105068490
    317 https://doi.org/10.1007/s40899-018-0258-0
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1007/s42398-020-00148-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132897604
    320 https://doi.org/10.1007/s42398-020-00148-4
    321 rdf:type schema:CreativeWork
    322 grid-institutes:grid.411381.e schema:alternateName Department of Geology, Andhra University, 530 003, Visakhapatnam, Andhra Pradesh, India
    323 schema:name Department of Geology, Andhra University, 530 003, Visakhapatnam, Andhra Pradesh, India
    324 rdf:type schema:Organization
    325 grid-institutes:grid.412779.e schema:alternateName Department of Geology, Utkal University, 751 004, Bhubaneswar, Odisha, India
    326 schema:name Department of Geology, Utkal University, 751 004, Bhubaneswar, Odisha, India
    327 rdf:type schema:Organization
    328 grid-institutes:grid.419382.5 schema:alternateName CSIR-National Geophysical Research Institute, 500 007, Hyderabad, Telangana, India
    329 schema:name CSIR-National Geophysical Research Institute, 500 007, Hyderabad, Telangana, India
    330 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...