Evaluation of the use of global satellite–gauge and satellite-only precipitation products in stream flow simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hieu Thi Bui, Hiroshi Ishidaira, Ning Shaowei

ABSTRACT

Satellite remote-sensing products with high spatial and time resolution are expected to provide alternative data sources for data-sparse regions. This study clarifies if the satellite–gauge product outperforms the satellite-only product by comparing remote-sensing precipitation products: one that incorporates rain gauge data (GSMaP-Gauge) and one that uses satellite only (GSMaP-MVK). The appropriateness of those two commonly used high-resolution products as the input to the conceptual hydrological model Hydrologiska Byråns Vattenbalansavdelning for stream flow prediction was also investigated. In addition, we also analyzed the deviations of model parameters due to the bias in remote-sensing precipitation inputs compared to standard ground measurements. The results indicated that GSMaP-Gauge was superior, with satisfactory to good performances in predicting stream flow in both temperate and subtropical basins (Hyeonsan, Fuji, and Da). However, its performance was slightly worse than GSMaP-MVK in the Upper-Cau basin, which was explained by the poor quality of the adjusted data source due to sparse data and the satellite–gauge blending algorithm of GSMaP-Gauge. Better parameter agreements with the observations of GSMaP-Gauge than GSMaP-MVK were found in the Hyeonsan and Da river basins where GSMaP-Gauge showed almost consistent relationship of monthly rainfall compared to ground measurements. More... »

PAGES

53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13201-019-0931-y

DOI

http://dx.doi.org/10.1007/s13201-019-0931-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112941457


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Civil Engineering", 
          "id": "https://www.grid.ac/institutes/grid.444789.2", 
          "name": [
            "Department of Environmental Engineering, National University of Civil Engineering, 55 Giai Phong Road, Hanoi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bui", 
        "givenName": "Hieu Thi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Yamanashi", 
          "id": "https://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Civil and Earth Resources Engineering, International Research Center for River Basin Environment (ICRE), University of Yamanashi, Takeda 4-3-11, 400-8511, Kofu, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishidaira", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "College of Civil Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaowei", 
        "givenName": "Ning", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1752-1688.2008.00276.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000657967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj.87a.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001715729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj.87a.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001715729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626669409492731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003638148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007563310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007563310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1753-318x.2008.00011.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012445257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jhm944.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013407610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm560.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018207213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018981874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2915-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024716258", 
          "https://doi.org/10.1007/978-90-481-2915-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2915-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024716258", 
          "https://doi.org/10.1007/978-90-481-2915-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-15-1147-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029438113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm431.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032806408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm431.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032806408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2011jhm1292.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035504409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-21-169-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044048595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2007.895337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1997)036<1176:pefrsi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063421698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.74.5_617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084937393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15625/0866-7187/39/4/10741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092108600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ursigass.2014.6929683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094004434"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Satellite remote-sensing products with high spatial and time resolution are expected to provide alternative data sources for data-sparse regions. This study clarifies if the satellite\u2013gauge product outperforms the satellite-only product by comparing remote-sensing precipitation products: one that incorporates rain gauge data (GSMaP-Gauge) and one that uses satellite only (GSMaP-MVK). The appropriateness of those two commonly used high-resolution products as the input to the conceptual hydrological model Hydrologiska Byr\u00e5ns Vattenbalansavdelning for stream flow prediction was also investigated. In addition, we also analyzed the deviations of model parameters due to the bias in remote-sensing precipitation inputs compared to standard ground measurements. The results indicated that GSMaP-Gauge was superior, with satisfactory to good performances in predicting stream flow in both temperate and subtropical basins (Hyeonsan, Fuji, and Da). However, its performance was slightly worse than GSMaP-MVK in the Upper-Cau basin, which was explained by the poor quality of the adjusted data source due to sparse data and the satellite\u2013gauge blending algorithm of GSMaP-Gauge. Better parameter agreements with the observations of GSMaP-Gauge than GSMaP-MVK were found in the Hyeonsan and Da river basins where GSMaP-Gauge showed almost consistent relationship of monthly rainfall compared to ground measurements.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13201-019-0931-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051421", 
        "issn": [
          "2190-5487", 
          "2190-5495"
        ], 
        "name": "Applied Water Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Evaluation of the use of global satellite\u2013gauge and satellite-only precipitation products in stream flow simulations", 
    "pagination": "53", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02f910ce5f516a9842864226cc9aa922996a25d1de3d6b0c14deb8d3895487a2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13201-019-0931-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112941457"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13201-019-0931-y", 
      "https://app.dimensions.ai/details/publication/pub.1112941457"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72847_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13201-019-0931-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13201-019-0931-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13201-019-0931-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13201-019-0931-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13201-019-0931-y'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13201-019-0931-y schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N490dcccaaa554ce9beb3c2218937a78d
4 schema:citation sg:pub.10.1007/978-90-481-2915-7_11
5 https://doi.org/10.1002/hyp.7529
6 https://doi.org/10.1080/02626669409492731
7 https://doi.org/10.1109/tgrs.2007.895337
8 https://doi.org/10.1109/ursigass.2014.6929683
9 https://doi.org/10.1111/j.1752-1688.2008.00276.x
10 https://doi.org/10.1111/j.1753-318x.2008.00011.x
11 https://doi.org/10.1175/1520-0450(1997)036<1176:pefrsi>2.0.co;2
12 https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2
13 https://doi.org/10.1175/2007jhm944.1
14 https://doi.org/10.1175/2011jhm1292.1
15 https://doi.org/10.1175/jhm431.1
16 https://doi.org/10.1175/jhm560.1
17 https://doi.org/10.15625/0866-7187/39/4/10741
18 https://doi.org/10.2151/jmsj.87a.137
19 https://doi.org/10.2151/jmsj1965.74.5_617
20 https://doi.org/10.5194/hess-15-1147-2011
21 https://doi.org/10.5194/hess-21-169-2017
22 schema:datePublished 2019-04
23 schema:datePublishedReg 2019-04-01
24 schema:description Satellite remote-sensing products with high spatial and time resolution are expected to provide alternative data sources for data-sparse regions. This study clarifies if the satellite–gauge product outperforms the satellite-only product by comparing remote-sensing precipitation products: one that incorporates rain gauge data (GSMaP-Gauge) and one that uses satellite only (GSMaP-MVK). The appropriateness of those two commonly used high-resolution products as the input to the conceptual hydrological model Hydrologiska Byråns Vattenbalansavdelning for stream flow prediction was also investigated. In addition, we also analyzed the deviations of model parameters due to the bias in remote-sensing precipitation inputs compared to standard ground measurements. The results indicated that GSMaP-Gauge was superior, with satisfactory to good performances in predicting stream flow in both temperate and subtropical basins (Hyeonsan, Fuji, and Da). However, its performance was slightly worse than GSMaP-MVK in the Upper-Cau basin, which was explained by the poor quality of the adjusted data source due to sparse data and the satellite–gauge blending algorithm of GSMaP-Gauge. Better parameter agreements with the observations of GSMaP-Gauge than GSMaP-MVK were found in the Hyeonsan and Da river basins where GSMaP-Gauge showed almost consistent relationship of monthly rainfall compared to ground measurements.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N19ca712366bd4e5790a137095651827e
29 N8076725883f14393a6f887d9e6f56c48
30 sg:journal.1051421
31 schema:name Evaluation of the use of global satellite–gauge and satellite-only precipitation products in stream flow simulations
32 schema:pagination 53
33 schema:productId N6bad0ac3a81645e9a5c3424711afbd65
34 Nc8a22393a6d64b298afad103394a5166
35 Ne2cb4900d0c84e61bcf628781492c76a
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112941457
37 https://doi.org/10.1007/s13201-019-0931-y
38 schema:sdDatePublished 2019-04-11T12:53
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Ndd3aa464206f4ce194ad64e147134fb5
41 schema:url https://link.springer.com/10.1007%2Fs13201-019-0931-y
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1432d0c7ead7450ea4c406a96350c873 schema:affiliation https://www.grid.ac/institutes/grid.267500.6
46 schema:familyName Ishidaira
47 schema:givenName Hiroshi
48 rdf:type schema:Person
49 N19ca712366bd4e5790a137095651827e schema:volumeNumber 9
50 rdf:type schema:PublicationVolume
51 N26aac7c7c15047d29a7b959177fc6313 schema:affiliation https://www.grid.ac/institutes/grid.444789.2
52 schema:familyName Bui
53 schema:givenName Hieu Thi
54 rdf:type schema:Person
55 N48fedb58d64d4419855e7232ab13098e rdf:first N1432d0c7ead7450ea4c406a96350c873
56 rdf:rest N6aeada72b22e4582949109d5b99c3873
57 N490dcccaaa554ce9beb3c2218937a78d rdf:first N26aac7c7c15047d29a7b959177fc6313
58 rdf:rest N48fedb58d64d4419855e7232ab13098e
59 N6aeada72b22e4582949109d5b99c3873 rdf:first Nb32b6c9062094318ad271de8bdebe568
60 rdf:rest rdf:nil
61 N6bad0ac3a81645e9a5c3424711afbd65 schema:name dimensions_id
62 schema:value pub.1112941457
63 rdf:type schema:PropertyValue
64 N8076725883f14393a6f887d9e6f56c48 schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 Nb32b6c9062094318ad271de8bdebe568 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
67 schema:familyName Shaowei
68 schema:givenName Ning
69 rdf:type schema:Person
70 Nc8a22393a6d64b298afad103394a5166 schema:name readcube_id
71 schema:value 02f910ce5f516a9842864226cc9aa922996a25d1de3d6b0c14deb8d3895487a2
72 rdf:type schema:PropertyValue
73 Ndd3aa464206f4ce194ad64e147134fb5 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ne2cb4900d0c84e61bcf628781492c76a schema:name doi
76 schema:value 10.1007/s13201-019-0931-y
77 rdf:type schema:PropertyValue
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
82 schema:name Geomatic Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1051421 schema:issn 2190-5487
85 2190-5495
86 schema:name Applied Water Science
87 rdf:type schema:Periodical
88 sg:pub.10.1007/978-90-481-2915-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024716258
89 https://doi.org/10.1007/978-90-481-2915-7_11
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/hyp.7529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007563310
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1080/02626669409492731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003638148
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tgrs.2007.895337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610156
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/ursigass.2014.6929683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094004434
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1111/j.1752-1688.2008.00276.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000657967
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1111/j.1753-318x.2008.00011.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012445257
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1175/1520-0450(1997)036<1176:pefrsi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063421698
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018981874
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1175/2007jhm944.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013407610
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1175/2011jhm1292.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035504409
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1175/jhm431.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032806408
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1175/jhm560.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018207213
114 rdf:type schema:CreativeWork
115 https://doi.org/10.15625/0866-7187/39/4/10741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092108600
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2151/jmsj.87a.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001715729
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2151/jmsj1965.74.5_617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084937393
120 rdf:type schema:CreativeWork
121 https://doi.org/10.5194/hess-15-1147-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029438113
122 rdf:type schema:CreativeWork
123 https://doi.org/10.5194/hess-21-169-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044048595
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.256896.6 schema:alternateName Hefei University of Technology
126 schema:name College of Civil Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, China
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.267500.6 schema:alternateName University of Yamanashi
129 schema:name Department of Civil and Earth Resources Engineering, International Research Center for River Basin Environment (ICRE), University of Yamanashi, Takeda 4-3-11, 400-8511, Kofu, Yamanashi, Japan
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.444789.2 schema:alternateName National University of Civil Engineering
132 schema:name Department of Environmental Engineering, National University of Civil Engineering, 55 Giai Phong Road, Hanoi, Vietnam
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...