Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03

AUTHORS

Olutoyin A. Fashae, Moshood N. Tijani, Abel O. Talabi, Oluwatola I. Adedeji

ABSTRACT

Due to complex and erratic nature of groundwater occurrences in crystalline basement terrains, groundwater development in form of boreholes/wells without the necessary pre-drilling hydrogeological investigations usually results in failure. Therefore, there is the need for adequate characterization of aquifers and delineation of groundwater potential zones in such crystalline basement setting. This study employed the integration of multi-criteria decision analysis (MCDA), remote sensing (RS) and geographical information system (GIS) techniques to delineate groundwater potential zones in crystalline basement terrain of SW-Nigeria and validation of the result with existing borehole/well yield data. The study approach involved integration of nine different thematic layers (geology, rainfall geomorphology, soil, drainage density, lineament density, landuse, slope and drainage proximity) based on weights assignment and normalization with respect to the relative contribution of the different themes to groundwater occurrence using Saaty’s analytic hierarchy approach. Following weigh normalization and ranking, the thematic maps were integrated using ArcGIS 10.0 software to generate the overall groundwater potential map for the study area. The result revealed that the study area can be categorized into three different groundwater potential zones: high, medium and low. Greater portion of the study area (84,121.8 km2) representing about 78 % of the total area, fall within the medium groundwater potential zone which are generally underlain by medium-porphyritic granite, biotite-hornblende granite and granite gneiss bedrock settings. About 18,239.7 km2 (17 %) fall under high groundwater potential zone which are characterized by weathered/fractured quartzite, quartz-schist, amphibolite schist and phyllite bedrock settings. However, areas of low groundwater potentials constitute only 3 % (3,416.54 km2) of the total study area and are mostly underlain by migmatite, banded and augen gneiss bedrock settings. Subsequent validation with boreholes/well yield data revealed a good correlation with respect to the observed groundwater potential zonation. Wells/boreholes with yields greater than >150 m3/day are generally characteristic of areas with high groundwater potential while those with yields of 75–150 and <75 m3/day are typical of areas with medium and low groundwater potentials, respectively. The validation clearly highlights the efficacy of the integrated MCDA, RS and GIS methods employed in this study as useful modern approach for proper groundwater resources evaluation; providing quick prospective guides for groundwater exploration and exploitation in such crystalline basement settings. More... »

PAGES

19-38

References to SciGraph publications

  • 1994-11. Hydrogeochemical assessment of groundwater in Moro area, Kwara state, Nigeria in ENVIRONMENTAL GEOLOGY
  • 2008-08. Deciphering potential groundwater zone in hard rock through the application of GIS in ENVIRONMENTAL GEOLOGY
  • 2006-08. Groundwater potential index in a crystalline terrain using remote sensing data in ENVIRONMENTAL GEOLOGY
  • 1996-03. Groundwater Assessment Using Remote Sensing And GIS In A Rural Groundwater Project In Ghana: Lessons Learned in HYDROGEOLOGY JOURNAL
  • 1995-01. Hydrogeological Characterisation And Water-Supply Potential Of Basement Aquifers In Tropical Africa in HYDROGEOLOGY JOURNAL
  • 2011-02. Quantitative modeling of groundwater in Satluj River basin of Rupnagar district of Punjab using remote sensing and geographic information system in ENVIRONMENTAL EARTH SCIENCES
  • 2013-04. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2000-12. Groundwater Prospect Zoning Using Remote Sensing and Geographical Information System: A Case Study in Dala-Renukoot Area, Sonbhadra District, Uttar Pradesh in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 2011-03. Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques in WATER RESOURCES MANAGEMENT
  • 2000-03. Evaluation of Ground Water Potential Zones Using Remote Sensing Data -A Case Study of Gaimukh Watershed, Bhandara District, Maharashtra in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 1995-03. Groundwater Exploration Using Remote Sensing And A Low-Cost Geographical Information System in HYDROGEOLOGY JOURNAL
  • 2000-06. A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: Evidence from Uganda in HYDROGEOLOGY JOURNAL
  • 2010-11. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques in HYDROGEOLOGY JOURNAL
  • 1998-10. Application of remote-sensing data to groundwater exploration: A case study of the Cross River State, southeastern Nigeria in HYDROGEOLOGY JOURNAL
  • 2012-07. Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach in WATER RESOURCES MANAGEMENT
  • 2009-08. Satellite-based estimates of groundwater depletion in India in NATURE
  • 2001-08. Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data in ENVIRONMENTAL GEOLOGY
  • 2010-03. Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin) in WATER RESOURCES MANAGEMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13201-013-0127-9

    DOI

    http://dx.doi.org/10.1007/s13201-013-0127-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052791151


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Ibadan", 
              "id": "https://www.grid.ac/institutes/grid.9582.6", 
              "name": [
                "Department of Geography, University of Ibadan, Ibadan, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fashae", 
            "givenName": "Olutoyin A.", 
            "id": "sg:person.014725124265.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725124265.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ibadan", 
              "id": "https://www.grid.ac/institutes/grid.9582.6", 
              "name": [
                "Department of Geography, University of Ibadan, Ibadan, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tijani", 
            "givenName": "Moshood N.", 
            "id": "sg:person.016153415717.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153415717.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ekiti State University", 
              "id": "https://www.grid.ac/institutes/grid.412361.3", 
              "name": [
                "Department of Geology, University of Ado-Ekiti, Ado Ekiti, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Talabi", 
            "givenName": "Abel O.", 
            "id": "sg:person.016040107372.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040107372.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Obafemi Awolowo University", 
              "id": "https://www.grid.ac/institutes/grid.10824.3f", 
              "name": [
                "Institute of Ecology and Environment Studies, Obafemi Awolowo University, Ile-Ife, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Adedeji", 
            "givenName": "Oluwatola I.", 
            "id": "sg:person.013312161713.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013312161713.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0377-2217(90)90072-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000601460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(90)90072-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000601460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431169608948744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004015173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1745-6584.2001.tb00348.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004633770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1745-6584.2001.tb00348.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004633770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1745-6584.2001.tb00348.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004633770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100400050162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007492012", 
              "https://doi.org/10.1007/s100400050162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1144/gsl.sp.1992.066.01.01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008722356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0143116042000274096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009037403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311600209823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009101975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-007-0992-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012923124", 
              "https://doi.org/10.1007/s00254-007-0992-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-007-0992-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012923124", 
              "https://doi.org/10.1007/s00254-007-0992-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100400050086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015922355", 
              "https://doi.org/10.1007/s100400050086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10040-010-0631-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017647244", 
              "https://doi.org/10.1007/s10040-010-0631-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-009-9479-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018599587", 
              "https://doi.org/10.1007/s11269-009-9479-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-009-9479-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018599587", 
              "https://doi.org/10.1007/s11269-009-9479-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1144/gsl.qjeg.1985.018.01.06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018873480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1623/hysj.48.5.821.51452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019984385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02991858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020095862", 
              "https://doi.org/10.1007/bf02991858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02991858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020095862", 
              "https://doi.org/10.1007/bf02991858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02990815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022414657", 
              "https://doi.org/10.1007/bf02990815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02508060903513502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023349687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-010-0574-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024176018", 
              "https://doi.org/10.1007/s12665-010-0574-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-006-0280-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027541622", 
              "https://doi.org/10.1007/s00254-006-0280-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-006-0280-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027541622", 
              "https://doi.org/10.1007/s00254-006-0280-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311698215018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028852817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431160802270131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029357465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431160600554983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031082999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-012-2810-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034531141", 
              "https://doi.org/10.1007/s10661-012-2810-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100400050057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035626640", 
              "https://doi.org/10.1007/s100400050057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311600209788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037270548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00766889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038104257", 
              "https://doi.org/10.1007/bf00766889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02626669609491525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039340853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0926-9851(96)00049-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041195303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100400050061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044008907", 
              "https://doi.org/10.1007/s100400050061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-1951(92)90019-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044210874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-1951(92)90019-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044210874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431160210144543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045111008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045767338", 
              "https://doi.org/10.1038/nature08238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045767338", 
              "https://doi.org/10.1038/nature08238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1144/gsl.qjeg.1987.020.04.02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048472403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100400000069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048589473", 
              "https://doi.org/10.1007/s100400000069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7142(91)90015-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048650663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7142(91)90015-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048650663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-010-9749-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050192124", 
              "https://doi.org/10.1007/s11269-010-9749-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-012-0038-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051697953", 
              "https://doi.org/10.1007/s11269-012-0038-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002540100295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052052148", 
              "https://doi.org/10.1007/s002540100295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1052242319", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1052242319", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1745-6584.1994.tb00897.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052607165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1745-6584.1994.tb00897.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052607165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.32.7.841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064720199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3362/9781780441290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099240678"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-03", 
        "datePublishedReg": "2014-03-01", 
        "description": "Due to complex and erratic nature of groundwater occurrences in crystalline basement terrains, groundwater development in form of boreholes/wells without the necessary pre-drilling hydrogeological investigations usually results in failure. Therefore, there is the need for adequate characterization of aquifers and delineation of groundwater potential zones in such crystalline basement setting. This study employed the integration of multi-criteria decision analysis (MCDA), remote sensing (RS) and geographical information system (GIS) techniques to delineate groundwater potential zones in crystalline basement terrain of SW-Nigeria and validation of the result with existing borehole/well yield data. The study approach involved integration of nine different thematic layers (geology, rainfall geomorphology, soil, drainage density, lineament density, landuse, slope and drainage proximity) based on weights assignment and normalization with respect to the relative contribution of the different themes to groundwater occurrence using Saaty\u2019s analytic hierarchy approach. Following weigh normalization and ranking, the thematic maps were integrated using ArcGIS 10.0 software to generate the overall groundwater potential map for the study area. The result revealed that the study area can be categorized into three different groundwater potential zones: high, medium and low. Greater portion of the study area (84,121.8 km2) representing about 78 % of the total area, fall within the medium groundwater potential zone which are generally underlain by medium-porphyritic granite, biotite-hornblende granite and granite gneiss bedrock settings. About 18,239.7 km2 (17 %) fall under high groundwater potential zone which are characterized by weathered/fractured quartzite, quartz-schist, amphibolite schist and phyllite bedrock settings. However, areas of low groundwater potentials constitute only 3 % (3,416.54 km2) of the total study area and are mostly underlain by migmatite, banded and augen gneiss bedrock settings. Subsequent validation with boreholes/well yield data revealed a good correlation with respect to the observed groundwater potential zonation. Wells/boreholes with yields greater than >150 m3/day are generally characteristic of areas with high groundwater potential while those with yields of 75\u2013150 and <75 m3/day are typical of areas with medium and low groundwater potentials, respectively. The validation clearly highlights the efficacy of the integrated MCDA, RS and GIS methods employed in this study as useful modern approach for proper groundwater resources evaluation; providing quick prospective guides for groundwater exploration and exploitation in such crystalline basement settings.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13201-013-0127-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1051421", 
            "issn": [
              "2190-5487", 
              "2190-5495"
            ], 
            "name": "Applied Water Science", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach", 
        "pagination": "19-38", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb75c9073a342be5bdf0b84ba601592f76389a04387427659dd654ae3fe6470f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13201-013-0127-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052791151"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13201-013-0127-9", 
          "https://app.dimensions.ai/details/publication/pub.1052791151"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000524.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs13201-013-0127-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13201-013-0127-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13201-013-0127-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13201-013-0127-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13201-013-0127-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    228 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13201-013-0127-9 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author Ne983e30ad45e466d9fab0cf7299de257
    4 schema:citation sg:pub.10.1007/bf00766889
    5 sg:pub.10.1007/bf02990815
    6 sg:pub.10.1007/bf02991858
    7 sg:pub.10.1007/s00254-006-0280-7
    8 sg:pub.10.1007/s00254-007-0992-3
    9 sg:pub.10.1007/s002540100295
    10 sg:pub.10.1007/s10040-010-0631-z
    11 sg:pub.10.1007/s100400000069
    12 sg:pub.10.1007/s100400050057
    13 sg:pub.10.1007/s100400050061
    14 sg:pub.10.1007/s100400050086
    15 sg:pub.10.1007/s100400050162
    16 sg:pub.10.1007/s10661-012-2810-y
    17 sg:pub.10.1007/s11269-009-9479-1
    18 sg:pub.10.1007/s11269-010-9749-y
    19 sg:pub.10.1007/s11269-012-0038-9
    20 sg:pub.10.1007/s12665-010-0574-7
    21 sg:pub.10.1038/nature08238
    22 https://app.dimensions.ai/details/publication/pub.1052242319
    23 https://doi.org/10.1016/0016-7142(91)90015-5
    24 https://doi.org/10.1016/0040-1951(92)90019-3
    25 https://doi.org/10.1016/0377-2217(90)90072-j
    26 https://doi.org/10.1016/s0926-9851(96)00049-3
    27 https://doi.org/10.1080/014311600209788
    28 https://doi.org/10.1080/014311600209823
    29 https://doi.org/10.1080/01431160210144543
    30 https://doi.org/10.1080/0143116042000274096
    31 https://doi.org/10.1080/01431160600554983
    32 https://doi.org/10.1080/01431160802270131
    33 https://doi.org/10.1080/01431169608948744
    34 https://doi.org/10.1080/014311698215018
    35 https://doi.org/10.1080/02508060903513502
    36 https://doi.org/10.1080/02626669609491525
    37 https://doi.org/10.1111/j.1745-6584.1994.tb00897.x
    38 https://doi.org/10.1111/j.1745-6584.2001.tb00348.x
    39 https://doi.org/10.1144/gsl.qjeg.1985.018.01.06
    40 https://doi.org/10.1144/gsl.qjeg.1987.020.04.02
    41 https://doi.org/10.1144/gsl.sp.1992.066.01.01
    42 https://doi.org/10.1287/mnsc.32.7.841
    43 https://doi.org/10.1623/hysj.48.5.821.51452
    44 https://doi.org/10.3362/9781780441290
    45 schema:datePublished 2014-03
    46 schema:datePublishedReg 2014-03-01
    47 schema:description Due to complex and erratic nature of groundwater occurrences in crystalline basement terrains, groundwater development in form of boreholes/wells without the necessary pre-drilling hydrogeological investigations usually results in failure. Therefore, there is the need for adequate characterization of aquifers and delineation of groundwater potential zones in such crystalline basement setting. This study employed the integration of multi-criteria decision analysis (MCDA), remote sensing (RS) and geographical information system (GIS) techniques to delineate groundwater potential zones in crystalline basement terrain of SW-Nigeria and validation of the result with existing borehole/well yield data. The study approach involved integration of nine different thematic layers (geology, rainfall geomorphology, soil, drainage density, lineament density, landuse, slope and drainage proximity) based on weights assignment and normalization with respect to the relative contribution of the different themes to groundwater occurrence using Saaty’s analytic hierarchy approach. Following weigh normalization and ranking, the thematic maps were integrated using ArcGIS 10.0 software to generate the overall groundwater potential map for the study area. The result revealed that the study area can be categorized into three different groundwater potential zones: high, medium and low. Greater portion of the study area (84,121.8 km2) representing about 78 % of the total area, fall within the medium groundwater potential zone which are generally underlain by medium-porphyritic granite, biotite-hornblende granite and granite gneiss bedrock settings. About 18,239.7 km2 (17 %) fall under high groundwater potential zone which are characterized by weathered/fractured quartzite, quartz-schist, amphibolite schist and phyllite bedrock settings. However, areas of low groundwater potentials constitute only 3 % (3,416.54 km2) of the total study area and are mostly underlain by migmatite, banded and augen gneiss bedrock settings. Subsequent validation with boreholes/well yield data revealed a good correlation with respect to the observed groundwater potential zonation. Wells/boreholes with yields greater than >150 m3/day are generally characteristic of areas with high groundwater potential while those with yields of 75–150 and <75 m3/day are typical of areas with medium and low groundwater potentials, respectively. The validation clearly highlights the efficacy of the integrated MCDA, RS and GIS methods employed in this study as useful modern approach for proper groundwater resources evaluation; providing quick prospective guides for groundwater exploration and exploitation in such crystalline basement settings.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree true
    51 schema:isPartOf N3ba710e90ab14900870d3561bfb870d6
    52 N8f857f9e4ce949dfae06fe66d05c13db
    53 sg:journal.1051421
    54 schema:name Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach
    55 schema:pagination 19-38
    56 schema:productId N3a90060f75c8431194bc147451c93879
    57 N41ccceb84258481d9dce67089b543548
    58 N617c4c7263cb4bf29f20ee792a9b6b69
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791151
    60 https://doi.org/10.1007/s13201-013-0127-9
    61 schema:sdDatePublished 2019-04-10T18:23
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Nffe6f2b14f9042afb1aba25fbd329076
    64 schema:url http://link.springer.com/10.1007%2Fs13201-013-0127-9
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N3a90060f75c8431194bc147451c93879 schema:name doi
    69 schema:value 10.1007/s13201-013-0127-9
    70 rdf:type schema:PropertyValue
    71 N3ba710e90ab14900870d3561bfb870d6 schema:issueNumber 1
    72 rdf:type schema:PublicationIssue
    73 N41ccceb84258481d9dce67089b543548 schema:name readcube_id
    74 schema:value fb75c9073a342be5bdf0b84ba601592f76389a04387427659dd654ae3fe6470f
    75 rdf:type schema:PropertyValue
    76 N617c4c7263cb4bf29f20ee792a9b6b69 schema:name dimensions_id
    77 schema:value pub.1052791151
    78 rdf:type schema:PropertyValue
    79 N8f857f9e4ce949dfae06fe66d05c13db schema:volumeNumber 4
    80 rdf:type schema:PublicationVolume
    81 Na72cb363dabb4654bceb589e15e2f6f4 rdf:first sg:person.016040107372.14
    82 rdf:rest Nd9ffb6855cc84a0dad17ee8e11609d34
    83 Nbc438f0e6c1248428a920af5cfcfde2a rdf:first sg:person.016153415717.43
    84 rdf:rest Na72cb363dabb4654bceb589e15e2f6f4
    85 Nd9ffb6855cc84a0dad17ee8e11609d34 rdf:first sg:person.013312161713.70
    86 rdf:rest rdf:nil
    87 Ne983e30ad45e466d9fab0cf7299de257 rdf:first sg:person.014725124265.49
    88 rdf:rest Nbc438f0e6c1248428a920af5cfcfde2a
    89 Nffe6f2b14f9042afb1aba25fbd329076 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Earth Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Physical Geography and Environmental Geoscience
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1051421 schema:issn 2190-5487
    98 2190-5495
    99 schema:name Applied Water Science
    100 rdf:type schema:Periodical
    101 sg:person.013312161713.70 schema:affiliation https://www.grid.ac/institutes/grid.10824.3f
    102 schema:familyName Adedeji
    103 schema:givenName Oluwatola I.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013312161713.70
    105 rdf:type schema:Person
    106 sg:person.014725124265.49 schema:affiliation https://www.grid.ac/institutes/grid.9582.6
    107 schema:familyName Fashae
    108 schema:givenName Olutoyin A.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725124265.49
    110 rdf:type schema:Person
    111 sg:person.016040107372.14 schema:affiliation https://www.grid.ac/institutes/grid.412361.3
    112 schema:familyName Talabi
    113 schema:givenName Abel O.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040107372.14
    115 rdf:type schema:Person
    116 sg:person.016153415717.43 schema:affiliation https://www.grid.ac/institutes/grid.9582.6
    117 schema:familyName Tijani
    118 schema:givenName Moshood N.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153415717.43
    120 rdf:type schema:Person
    121 sg:pub.10.1007/bf00766889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038104257
    122 https://doi.org/10.1007/bf00766889
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf02990815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022414657
    125 https://doi.org/10.1007/bf02990815
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf02991858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020095862
    128 https://doi.org/10.1007/bf02991858
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00254-006-0280-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027541622
    131 https://doi.org/10.1007/s00254-006-0280-7
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00254-007-0992-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012923124
    134 https://doi.org/10.1007/s00254-007-0992-3
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s002540100295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052052148
    137 https://doi.org/10.1007/s002540100295
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s10040-010-0631-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017647244
    140 https://doi.org/10.1007/s10040-010-0631-z
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s100400000069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048589473
    143 https://doi.org/10.1007/s100400000069
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s100400050057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035626640
    146 https://doi.org/10.1007/s100400050057
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s100400050061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044008907
    149 https://doi.org/10.1007/s100400050061
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s100400050086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015922355
    152 https://doi.org/10.1007/s100400050086
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s100400050162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007492012
    155 https://doi.org/10.1007/s100400050162
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10661-012-2810-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034531141
    158 https://doi.org/10.1007/s10661-012-2810-y
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11269-009-9479-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018599587
    161 https://doi.org/10.1007/s11269-009-9479-1
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s11269-010-9749-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050192124
    164 https://doi.org/10.1007/s11269-010-9749-y
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s11269-012-0038-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051697953
    167 https://doi.org/10.1007/s11269-012-0038-9
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s12665-010-0574-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024176018
    170 https://doi.org/10.1007/s12665-010-0574-7
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature08238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045767338
    173 https://doi.org/10.1038/nature08238
    174 rdf:type schema:CreativeWork
    175 https://app.dimensions.ai/details/publication/pub.1052242319 schema:CreativeWork
    176 https://doi.org/10.1016/0016-7142(91)90015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048650663
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/0040-1951(92)90019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044210874
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/0377-2217(90)90072-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1000601460
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/s0926-9851(96)00049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041195303
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1080/014311600209788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037270548
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1080/014311600209823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009101975
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1080/01431160210144543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045111008
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1080/0143116042000274096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009037403
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1080/01431160600554983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031082999
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1080/01431160802270131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029357465
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1080/01431169608948744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004015173
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1080/014311698215018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028852817
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1080/02508060903513502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349687
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1080/02626669609491525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340853
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1111/j.1745-6584.1994.tb00897.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052607165
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1111/j.1745-6584.2001.tb00348.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004633770
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1144/gsl.qjeg.1985.018.01.06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018873480
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1144/gsl.qjeg.1987.020.04.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048472403
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1144/gsl.sp.1992.066.01.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008722356
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1287/mnsc.32.7.841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720199
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1623/hysj.48.5.821.51452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019984385
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.3362/9781780441290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099240678
    219 rdf:type schema:CreativeWork
    220 https://www.grid.ac/institutes/grid.10824.3f schema:alternateName Obafemi Awolowo University
    221 schema:name Institute of Ecology and Environment Studies, Obafemi Awolowo University, Ile-Ife, Nigeria
    222 rdf:type schema:Organization
    223 https://www.grid.ac/institutes/grid.412361.3 schema:alternateName Ekiti State University
    224 schema:name Department of Geology, University of Ado-Ekiti, Ado Ekiti, Nigeria
    225 rdf:type schema:Organization
    226 https://www.grid.ac/institutes/grid.9582.6 schema:alternateName University of Ibadan
    227 schema:name Department of Geography, University of Ibadan, Ibadan, Nigeria
    228 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...