On two node tandem queueing model with time dependent service rates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

K. Srinivasa Rao, J. Durga Aparajitha

ABSTRACT

Queueing is a phenomenon associated with congestion. For controlling congestion and to utilize the resources optimally the queueing models are developed. In queueing models, it is customary to consider that the arrival and service processes are stable and follows a Poisson process. But in many systems the service process is time dependent and it can be well characterized by non-homogeneous Poisson process. This paper introduces a tandem queueing model with non-homogeneous Poisson service process. The system performance is analysed by deriving the system performance measure such as, average content of the queues, average waiting time of a customer in the queue and in the system, the throughput of transmitters, and the variance of the number of customers in the system. The effect of various changes in parameter on the system performance measures is carried through sensitivity analysis. It is observed that the time dependent service rate has significant influence on the system performance measures. This model can accurately predict the performance measures, when the service rates are time dependent. Several of the earlier models become particular cases of this model. More... »

PAGES

19-34

References to SciGraph publications

  • 1993-03. Networks of infinite-server queues with nonstationary Poisson input in QUEUEING SYSTEMS
  • 2000-06. On an Interdependent Communication Network in OPSEARCH
  • 2013-12. On parallel and series non homogeneous bulk arrival queueing model in OPSEARCH
  • 2016-12. Stochastic control of K-parallel and series queuing model and its applications in INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT
  • 1954-12. Queueing Systems with Phase Type Service in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13198-018-0731-z

    DOI

    http://dx.doi.org/10.1007/s13198-018-0731-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105927622


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Andhra University", 
              "id": "https://www.grid.ac/institutes/grid.411381.e", 
              "name": [
                "Department of Statistics, Andhra University, Visakhapatnam, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srinivasa Rao", 
            "givenName": "K.", 
            "id": "sg:person.011222126433.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222126433.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Andhra University", 
              "id": "https://www.grid.ac/institutes/grid.411381.e", 
              "name": [
                "Department of Statistics, Andhra University, Visakhapatnam, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durga Aparajitha", 
            "givenName": "J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0305-0548(03)00046-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004942066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0305-0548(03)00046-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004942066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/047120644x.ch15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007534841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13198-015-0358-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008063169", 
              "https://doi.org/10.1007/s13198-015-0358-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12597-013-0120-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010975692", 
              "https://doi.org/10.1007/s12597-013-0120-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2009.03.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014402064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1456645.1456648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017217381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2016.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034620442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/jors.1954.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038145932", 
              "https://doi.org/10.1057/jors.1954.23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.orl.2015.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040442884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01158933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041755303", 
              "https://doi.org/10.1007/bf01158933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01158933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041755303", 
              "https://doi.org/10.1007/bf01158933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/26.237886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061136278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/79.998079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061232108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/79.998080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061232109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/90.282603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061247074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/90.650143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061247355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpds.2006.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061752996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0102010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062837564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoap/1177004908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064397943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/moor.20.1.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064723732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.4.6.699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064730366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijor.2014.064023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067484253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijscc.2012.048614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067489917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3211924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070226162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/16950-6978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072599169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/3789-5217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072604434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/ijca2015906542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072609860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijor.2017.085960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091316126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.23919/acc.2017.7963027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094164166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/contel.2007.381867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094990012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03398604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099704683", 
              "https://doi.org/10.1007/bf03398604"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Queueing is a phenomenon associated with congestion. For controlling congestion and to utilize the resources optimally the queueing models are developed. In queueing models, it is customary to consider that the arrival and service processes are stable and follows a Poisson process. But in many systems the service process is time dependent and it can be well characterized by non-homogeneous Poisson process. This paper introduces a tandem queueing model with non-homogeneous Poisson service process. The system performance is analysed by deriving the system performance measure such as, average content of the queues, average waiting time of a customer in the queue and in the system, the throughput of transmitters, and the variance of the number of customers in the system. The effect of various changes in parameter on the system performance measures is carried through sensitivity analysis. It is observed that the time dependent service rate has significant influence on the system performance measures. This model can accurately predict the performance measures, when the service rates are time dependent. Several of the earlier models become particular cases of this model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13198-018-0731-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136866", 
            "issn": [
              "0975-6809", 
              "0976-4348"
            ], 
            "name": "International Journal of System Assurance Engineering and Management", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "On two node tandem queueing model with time dependent service rates", 
        "pagination": "19-34", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "460bceab1c400cd0ba4e75976793398c44a9a067f35ee714fb94a2f38a2b529b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13198-018-0731-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105927622"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13198-018-0731-z", 
          "https://app.dimensions.ai/details/publication/pub.1105927622"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13198-018-0731-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13198-018-0731-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13198-018-0731-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13198-018-0731-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13198-018-0731-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13198-018-0731-z schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N5dcb32ed9d6b4d15a97e5e343892aca3
    4 schema:citation sg:pub.10.1007/bf01158933
    5 sg:pub.10.1007/bf03398604
    6 sg:pub.10.1007/s12597-013-0120-y
    7 sg:pub.10.1007/s13198-015-0358-2
    8 sg:pub.10.1057/jors.1954.23
    9 https://doi.org/10.1002/047120644x.ch15
    10 https://doi.org/10.1016/j.cie.2016.03.012
    11 https://doi.org/10.1016/j.cor.2009.03.030
    12 https://doi.org/10.1016/j.orl.2015.06.014
    13 https://doi.org/10.1016/s0305-0548(03)00046-7
    14 https://doi.org/10.1109/26.237886
    15 https://doi.org/10.1109/79.998079
    16 https://doi.org/10.1109/79.998080
    17 https://doi.org/10.1109/90.282603
    18 https://doi.org/10.1109/90.650143
    19 https://doi.org/10.1109/contel.2007.381867
    20 https://doi.org/10.1109/tpds.2006.24
    21 https://doi.org/10.1137/0102010
    22 https://doi.org/10.1145/1456645.1456648
    23 https://doi.org/10.1214/aoap/1177004908
    24 https://doi.org/10.1287/moor.20.1.33
    25 https://doi.org/10.1287/opre.4.6.699
    26 https://doi.org/10.1504/ijor.2014.064023
    27 https://doi.org/10.1504/ijor.2017.085960
    28 https://doi.org/10.1504/ijscc.2012.048614
    29 https://doi.org/10.2307/3211924
    30 https://doi.org/10.23919/acc.2017.7963027
    31 https://doi.org/10.5120/16950-6978
    32 https://doi.org/10.5120/3789-5217
    33 https://doi.org/10.5120/ijca2015906542
    34 schema:datePublished 2019-02
    35 schema:datePublishedReg 2019-02-01
    36 schema:description Queueing is a phenomenon associated with congestion. For controlling congestion and to utilize the resources optimally the queueing models are developed. In queueing models, it is customary to consider that the arrival and service processes are stable and follows a Poisson process. But in many systems the service process is time dependent and it can be well characterized by non-homogeneous Poisson process. This paper introduces a tandem queueing model with non-homogeneous Poisson service process. The system performance is analysed by deriving the system performance measure such as, average content of the queues, average waiting time of a customer in the queue and in the system, the throughput of transmitters, and the variance of the number of customers in the system. The effect of various changes in parameter on the system performance measures is carried through sensitivity analysis. It is observed that the time dependent service rate has significant influence on the system performance measures. This model can accurately predict the performance measures, when the service rates are time dependent. Several of the earlier models become particular cases of this model.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf Nc79e7030267c4a26b3be36c01b1a80d3
    41 Ne5f67d41ab0643908e4e04a80a09203c
    42 sg:journal.1136866
    43 schema:name On two node tandem queueing model with time dependent service rates
    44 schema:pagination 19-34
    45 schema:productId N2c498a3418a3426e94cad675d43932fb
    46 N7ff86768c0cd42b3b43da58f3f3f761b
    47 Nd275ebfd830844089fd0eafaed8f81fb
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105927622
    49 https://doi.org/10.1007/s13198-018-0731-z
    50 schema:sdDatePublished 2019-04-11T13:10
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nf6cf6fbe8a3840af8ddc79bdd5dd3ce4
    53 schema:url https://link.springer.com/10.1007%2Fs13198-018-0731-z
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N2c498a3418a3426e94cad675d43932fb schema:name readcube_id
    58 schema:value 460bceab1c400cd0ba4e75976793398c44a9a067f35ee714fb94a2f38a2b529b
    59 rdf:type schema:PropertyValue
    60 N5dcb32ed9d6b4d15a97e5e343892aca3 rdf:first sg:person.011222126433.90
    61 rdf:rest Nb33316fe0c7b48e8bfef8ac4922aafaa
    62 N5f02086fc1b94d3fa635c0fcf511add1 schema:affiliation https://www.grid.ac/institutes/grid.411381.e
    63 schema:familyName Durga Aparajitha
    64 schema:givenName J.
    65 rdf:type schema:Person
    66 N7ff86768c0cd42b3b43da58f3f3f761b schema:name dimensions_id
    67 schema:value pub.1105927622
    68 rdf:type schema:PropertyValue
    69 Nb33316fe0c7b48e8bfef8ac4922aafaa rdf:first N5f02086fc1b94d3fa635c0fcf511add1
    70 rdf:rest rdf:nil
    71 Nc79e7030267c4a26b3be36c01b1a80d3 schema:volumeNumber 10
    72 rdf:type schema:PublicationVolume
    73 Nd275ebfd830844089fd0eafaed8f81fb schema:name doi
    74 schema:value 10.1007/s13198-018-0731-z
    75 rdf:type schema:PropertyValue
    76 Ne5f67d41ab0643908e4e04a80a09203c schema:issueNumber 1
    77 rdf:type schema:PublicationIssue
    78 Nf6cf6fbe8a3840af8ddc79bdd5dd3ce4 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Statistics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136866 schema:issn 0975-6809
    87 0976-4348
    88 schema:name International Journal of System Assurance Engineering and Management
    89 rdf:type schema:Periodical
    90 sg:person.011222126433.90 schema:affiliation https://www.grid.ac/institutes/grid.411381.e
    91 schema:familyName Srinivasa Rao
    92 schema:givenName K.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222126433.90
    94 rdf:type schema:Person
    95 sg:pub.10.1007/bf01158933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041755303
    96 https://doi.org/10.1007/bf01158933
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf03398604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099704683
    99 https://doi.org/10.1007/bf03398604
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s12597-013-0120-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010975692
    102 https://doi.org/10.1007/s12597-013-0120-y
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s13198-015-0358-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008063169
    105 https://doi.org/10.1007/s13198-015-0358-2
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1057/jors.1954.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038145932
    108 https://doi.org/10.1057/jors.1954.23
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/047120644x.ch15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007534841
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.cie.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034620442
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.cor.2009.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014402064
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.orl.2015.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040442884
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0305-0548(03)00046-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004942066
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/26.237886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061136278
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/79.998079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232108
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/79.998080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232109
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/90.282603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247074
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/90.650143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247355
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/contel.2007.381867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094990012
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/tpds.2006.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061752996
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1137/0102010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837564
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1145/1456645.1456648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017217381
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1214/aoap/1177004908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397943
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1287/moor.20.1.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723732
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1287/opre.4.6.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730366
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1504/ijor.2014.064023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067484253
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1504/ijor.2017.085960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091316126
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1504/ijscc.2012.048614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067489917
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.2307/3211924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226162
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.23919/acc.2017.7963027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094164166
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.5120/16950-6978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072599169
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.5120/3789-5217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072604434
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.5120/ijca2015906542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072609860
    159 rdf:type schema:CreativeWork
    160 https://www.grid.ac/institutes/grid.411381.e schema:alternateName Andhra University
    161 schema:name Department of Statistics, Andhra University, Visakhapatnam, India
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...