Development of electrochemical biosensor based on CNT–Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Monika Kundu, Hema Bhardwaj, Manoj Kumar Pandey, Prameela Krishnan, R. K. Kotnala, Gajjala Sumana

ABSTRACT

An electrochemical biosensor was developed to determine formaldehyde (HCHO) adulteration commonly found in food. The current responses of various electrodes based on multiwalled carbon nanotubes (CNTs) and synthesized nanocomposite (CNT–Fe3O4) were measured using cyclic voltammetry. The nanocomposite based biosensor shows comparatively high sensitivity (527 µA mg/L−1 cm−2), low detection limit (0.05 mg/L) in linear detection range 0.05–0.5 mg/L for formaldehyde detection using formaldehyde dehydrogenase (FDH) enzyme. In real sample analysis, the low obtained RSD values (less than 1.79) and good recovery rates (more than 90%) signify an efficient and precise sensor for the selective quantification of formaldehyde in orange juice. The developed biosensor has future implications for determining formaldehyde adulteration in citrus fruit juices and other liquid foods in agri-food chain to further resolve global food safety concerns, control unethical business practices of adulteration and reduce the widespread food borne illness outbreaks. More... »

PAGES

1829-1840

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13197-019-03635-7

DOI

http://dx.doi.org/10.1007/s13197-019-03635-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112216626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Council of Scientific and Industrial Research", 
          "id": "https://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India", 
            "CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India", 
            "AcSIR-CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kundu", 
        "givenName": "Monika", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Council of Scientific and Industrial Research", 
          "id": "https://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India", 
            "AcSIR-CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhardwaj", 
        "givenName": "Hema", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Physical Laboratory of India", 
          "id": "https://www.grid.ac/institutes/grid.419701.a", 
          "name": [
            "CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandey", 
        "givenName": "Manoj Kumar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Agricultural Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.418196.3", 
          "name": [
            "Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnan", 
        "givenName": "Prameela", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Physical Laboratory of India", 
          "id": "https://www.grid.ac/institutes/grid.419701.a", 
          "name": [
            "CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotnala", 
        "givenName": "R. K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Council of Scientific and Industrial Research", 
          "id": "https://www.grid.ac/institutes/grid.418099.d", 
          "name": [
            "CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India", 
            "AcSIR-CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sumana", 
        "givenName": "Gajjala", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2903/j.efsa.2007.415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000938466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2015.11.142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000957628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1jm12313k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004904890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2016.01.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006679691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbsr.2017.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007327233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-670-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007722977", 
          "https://doi.org/10.1007/978-1-60761-670-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-670-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007722977", 
          "https://doi.org/10.1007/978-1-60761-670-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2013.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008459474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5897/ajfs2014.1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010365437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-016-0160-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015287218", 
          "https://doi.org/10.1186/s12940-016-0160-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-016-0160-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015287218", 
          "https://doi.org/10.1186/s12940-016-0160-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cca.2014.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019315775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/eng.2012.410b035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020212337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm960157j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022855245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm960157j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022855245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5487/tr.2015.31.3.273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025246823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta01923d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026877873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2013.07.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027468760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2tb00192f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028303507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2016.03.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030614659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039142334", 
          "https://doi.org/10.1038/srep07493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5pp00452g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041235012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm15914g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041396006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2014.08.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042955571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s101109963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043231049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ra22116a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045673955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0956-5663(00)00054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048248626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/bios6030032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049218655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/715872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051131433", 
          "https://doi.org/10.1155/2010/715872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac50019a033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055007490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b12460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055129333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja071536o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja071536o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7763/ijesd.2013.v4.366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074034228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131231", 
          "https://doi.org/10.1038/srep43181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2329-888x.1000167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084656332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11591/.v3i2.4680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103166176"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "An electrochemical biosensor was developed to determine formaldehyde (HCHO) adulteration commonly found in food. The current responses of various electrodes based on multiwalled carbon nanotubes (CNTs) and synthesized nanocomposite (CNT\u2013Fe3O4) were measured using cyclic voltammetry. The nanocomposite based biosensor shows comparatively high sensitivity (527 \u00b5A mg/L\u22121 cm\u22122), low detection limit (0.05 mg/L) in linear detection range 0.05\u20130.5 mg/L for formaldehyde detection using formaldehyde dehydrogenase (FDH) enzyme. In real sample analysis, the low obtained RSD values (less than 1.79) and good recovery rates (more than 90%) signify an efficient and precise sensor for the selective quantification of formaldehyde in orange juice. The developed biosensor has future implications for determining formaldehyde adulteration in citrus fruit juices and other liquid foods in agri-food chain to further resolve global food safety concerns, control unethical business practices of adulteration and reduce the widespread food borne illness outbreaks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13197-019-03635-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1006305", 
        "issn": [
          "0022-1155", 
          "0975-8402"
        ], 
        "name": "Journal of Food Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "Development of electrochemical biosensor based on CNT\u2013Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice", 
    "pagination": "1829-1840", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7bcf6aece4423cb86adb8e97926415e7faaa236e0a744c2d22c26fc350280775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13197-019-03635-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112216626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13197-019-03635-7", 
      "https://app.dimensions.ai/details/publication/pub.1112216626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13197-019-03635-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13197-019-03635-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13197-019-03635-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13197-019-03635-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13197-019-03635-7'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13197-019-03635-7 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Ne575ed587fda40389c5d57b96d3f1bda
4 schema:citation sg:pub.10.1007/978-1-60761-670-2_3
5 sg:pub.10.1038/srep07493
6 sg:pub.10.1038/srep43181
7 sg:pub.10.1155/2010/715872
8 sg:pub.10.1186/s12940-016-0160-x
9 https://doi.org/10.1016/j.cca.2014.06.023
10 https://doi.org/10.1016/j.ceramint.2013.07.103
11 https://doi.org/10.1016/j.foodchem.2014.08.085
12 https://doi.org/10.1016/j.foodchem.2016.01.136
13 https://doi.org/10.1016/j.sbsr.2017.01.005
14 https://doi.org/10.1016/j.snb.2013.04.040
15 https://doi.org/10.1016/j.snb.2015.11.142
16 https://doi.org/10.1016/j.snb.2016.03.064
17 https://doi.org/10.1016/s0956-5663(00)00054-3
18 https://doi.org/10.1021/ac50019a033
19 https://doi.org/10.1021/acsami.5b12460
20 https://doi.org/10.1021/cm960157j
21 https://doi.org/10.1021/ja071536o
22 https://doi.org/10.1039/c1jm12313k
23 https://doi.org/10.1039/c2jm15914g
24 https://doi.org/10.1039/c2tb00192f
25 https://doi.org/10.1039/c5pp00452g
26 https://doi.org/10.1039/c5ra22116a
27 https://doi.org/10.1039/c6ta01923d
28 https://doi.org/10.11591/.v3i2.4680
29 https://doi.org/10.2903/j.efsa.2007.415
30 https://doi.org/10.3390/bios6030032
31 https://doi.org/10.3390/s101109963
32 https://doi.org/10.4172/2329-888x.1000167
33 https://doi.org/10.4236/eng.2012.410b035
34 https://doi.org/10.5487/tr.2015.31.3.273
35 https://doi.org/10.5897/ajfs2014.1233
36 https://doi.org/10.7763/ijesd.2013.v4.366
37 schema:datePublished 2019-04
38 schema:datePublishedReg 2019-04-01
39 schema:description An electrochemical biosensor was developed to determine formaldehyde (HCHO) adulteration commonly found in food. The current responses of various electrodes based on multiwalled carbon nanotubes (CNTs) and synthesized nanocomposite (CNT–Fe3O4) were measured using cyclic voltammetry. The nanocomposite based biosensor shows comparatively high sensitivity (527 µA mg/L−1 cm−2), low detection limit (0.05 mg/L) in linear detection range 0.05–0.5 mg/L for formaldehyde detection using formaldehyde dehydrogenase (FDH) enzyme. In real sample analysis, the low obtained RSD values (less than 1.79) and good recovery rates (more than 90%) signify an efficient and precise sensor for the selective quantification of formaldehyde in orange juice. The developed biosensor has future implications for determining formaldehyde adulteration in citrus fruit juices and other liquid foods in agri-food chain to further resolve global food safety concerns, control unethical business practices of adulteration and reduce the widespread food borne illness outbreaks.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf Nc6a3850429714e7a87855dfa47af992d
44 Nd228fc2673c84626a114f1b26c5fc817
45 sg:journal.1006305
46 schema:name Development of electrochemical biosensor based on CNT–Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice
47 schema:pagination 1829-1840
48 schema:productId N65c6ebc2460242e7bb2d9275f9a446d6
49 Ne0a1c2ffa64d44ab8abc3cf29dd83eb5
50 Nf8f924ec8752420dbb8967d53389660b
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112216626
52 https://doi.org/10.1007/s13197-019-03635-7
53 schema:sdDatePublished 2019-04-11T14:00
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N8b2d570432b24ae884d03411f7e272d2
56 schema:url https://link.springer.com/10.1007%2Fs13197-019-03635-7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N1e12b58a9c4f4bee8269540f4eb38f85 rdf:first N57399fa21dee4ae29746277a795b0a69
61 rdf:rest Nfa8ff76f3ae54c639102e294788548f5
62 N248fae41dffb4bb9bd0fa773e0a07ca8 schema:affiliation https://www.grid.ac/institutes/grid.418099.d
63 schema:familyName Bhardwaj
64 schema:givenName Hema
65 rdf:type schema:Person
66 N311f56253c6449bb9b56990f06cd1964 rdf:first N248fae41dffb4bb9bd0fa773e0a07ca8
67 rdf:rest N1e12b58a9c4f4bee8269540f4eb38f85
68 N47b58579d73a4229840d9fb56f5d37e2 rdf:first Ne066697ca0bf44519097f67c03dfaef4
69 rdf:rest rdf:nil
70 N57399fa21dee4ae29746277a795b0a69 schema:affiliation https://www.grid.ac/institutes/grid.419701.a
71 schema:familyName Pandey
72 schema:givenName Manoj Kumar
73 rdf:type schema:Person
74 N65c6ebc2460242e7bb2d9275f9a446d6 schema:name readcube_id
75 schema:value 7bcf6aece4423cb86adb8e97926415e7faaa236e0a744c2d22c26fc350280775
76 rdf:type schema:PropertyValue
77 N8b2d570432b24ae884d03411f7e272d2 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N9d7dea678e1b49c7a8523b58f51b42f5 rdf:first Nfdbd677833c64e369800f1ed419ff314
80 rdf:rest N47b58579d73a4229840d9fb56f5d37e2
81 Nc6a3850429714e7a87855dfa47af992d schema:volumeNumber 56
82 rdf:type schema:PublicationVolume
83 Ncfe639d98d5f41d4aa94615a4d88082b schema:affiliation https://www.grid.ac/institutes/grid.418196.3
84 schema:familyName Krishnan
85 schema:givenName Prameela
86 rdf:type schema:Person
87 Nd228fc2673c84626a114f1b26c5fc817 schema:issueNumber 4
88 rdf:type schema:PublicationIssue
89 Ne066697ca0bf44519097f67c03dfaef4 schema:affiliation https://www.grid.ac/institutes/grid.418099.d
90 schema:familyName Sumana
91 schema:givenName Gajjala
92 rdf:type schema:Person
93 Ne0a1c2ffa64d44ab8abc3cf29dd83eb5 schema:name dimensions_id
94 schema:value pub.1112216626
95 rdf:type schema:PropertyValue
96 Ne575ed587fda40389c5d57b96d3f1bda rdf:first Nf107d8220fb24cbaa5bac3fc71c31390
97 rdf:rest N311f56253c6449bb9b56990f06cd1964
98 Nf107d8220fb24cbaa5bac3fc71c31390 schema:affiliation https://www.grid.ac/institutes/grid.418099.d
99 schema:familyName Kundu
100 schema:givenName Monika
101 rdf:type schema:Person
102 Nf8f924ec8752420dbb8967d53389660b schema:name doi
103 schema:value 10.1007/s13197-019-03635-7
104 rdf:type schema:PropertyValue
105 Nfa8ff76f3ae54c639102e294788548f5 rdf:first Ncfe639d98d5f41d4aa94615a4d88082b
106 rdf:rest N9d7dea678e1b49c7a8523b58f51b42f5
107 Nfdbd677833c64e369800f1ed419ff314 schema:affiliation https://www.grid.ac/institutes/grid.419701.a
108 schema:familyName Kotnala
109 schema:givenName R. K.
110 rdf:type schema:Person
111 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
112 schema:name Chemical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
115 schema:name Analytical Chemistry
116 rdf:type schema:DefinedTerm
117 sg:journal.1006305 schema:issn 0022-1155
118 0975-8402
119 schema:name Journal of Food Science and Technology
120 rdf:type schema:Periodical
121 sg:pub.10.1007/978-1-60761-670-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007722977
122 https://doi.org/10.1007/978-1-60761-670-2_3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/srep07493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039142334
125 https://doi.org/10.1038/srep07493
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep43181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131231
128 https://doi.org/10.1038/srep43181
129 rdf:type schema:CreativeWork
130 sg:pub.10.1155/2010/715872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051131433
131 https://doi.org/10.1155/2010/715872
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/s12940-016-0160-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015287218
134 https://doi.org/10.1186/s12940-016-0160-x
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cca.2014.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019315775
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ceramint.2013.07.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027468760
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.foodchem.2014.08.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042955571
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.foodchem.2016.01.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006679691
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.sbsr.2017.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007327233
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.snb.2013.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008459474
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.snb.2015.11.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000957628
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.snb.2016.03.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030614659
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0956-5663(00)00054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048248626
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/ac50019a033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055007490
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/acsami.5b12460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055129333
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/cm960157j schema:sameAs https://app.dimensions.ai/details/publication/pub.1022855245
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ja071536o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055844796
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1039/c1jm12313k schema:sameAs https://app.dimensions.ai/details/publication/pub.1004904890
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1039/c2jm15914g schema:sameAs https://app.dimensions.ai/details/publication/pub.1041396006
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1039/c2tb00192f schema:sameAs https://app.dimensions.ai/details/publication/pub.1028303507
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/c5pp00452g schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235012
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1039/c5ra22116a schema:sameAs https://app.dimensions.ai/details/publication/pub.1045673955
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/c6ta01923d schema:sameAs https://app.dimensions.ai/details/publication/pub.1026877873
173 rdf:type schema:CreativeWork
174 https://doi.org/10.11591/.v3i2.4680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103166176
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2903/j.efsa.2007.415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000938466
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3390/bios6030032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049218655
179 rdf:type schema:CreativeWork
180 https://doi.org/10.3390/s101109963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043231049
181 rdf:type schema:CreativeWork
182 https://doi.org/10.4172/2329-888x.1000167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084656332
183 rdf:type schema:CreativeWork
184 https://doi.org/10.4236/eng.2012.410b035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020212337
185 rdf:type schema:CreativeWork
186 https://doi.org/10.5487/tr.2015.31.3.273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025246823
187 rdf:type schema:CreativeWork
188 https://doi.org/10.5897/ajfs2014.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365437
189 rdf:type schema:CreativeWork
190 https://doi.org/10.7763/ijesd.2013.v4.366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074034228
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.418099.d schema:alternateName Council of Scientific and Industrial Research
193 schema:name AcSIR-CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India
194 CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India
195 Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.418196.3 schema:alternateName Indian Agricultural Research Institute
198 schema:name Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.419701.a schema:alternateName National Physical Laboratory of India
201 schema:name CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, 110012, New Delhi, India
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...