Optimization of soybean heat-treating using a fluidized bed dryer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Marcela L. Martínez, María A. Marín, Pablo D. Ribotta

ABSTRACT

This study was designed to optimize drying and inactivation of heat-labile inhibitors conditions of soybean by using a fluidized bed dryer, in order to shorten treatment time and to reduce losses in end-product quality such as soy flour color and soy protein solubility. The independent variables were initial moisture of soybeans, heating time and temperature of air entering the fluidization chamber. The response variables studied were final moisture of soybeans, inactivation of urease, soy flour color and soy protein solubility. Response surface methodology was able to model the response of the different studied variables. For each response group, relevant terms were included into an equation; the behavior of response was predicted within the experimental area and was presented as a response surface. The results suggested that a combination of soybean initial moisture of 0.14 g/g (wb), treatment time of 3.4 min and hot-air temperature of 136.5 °C could be a good processing combination of parameters for heating soybean using hot-air in order to reduce treatment time and quality losses in soybean flour. Thus, fluidized bed drying technology may be used as an alternative industrial method to eliminate the antinutritional factors. More... »

PAGES

1144-1150

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13197-011-0434-9

DOI

http://dx.doi.org/10.1007/s13197-011-0434-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014818885

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24426027


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "IMBIV (CONICET-UNC), ICTA- FCEFyN-UNC, Av. V\u00e9lez S\u00e1rsfield 1611, CPAX5016GCA, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez", 
        "givenName": "Marcela L.", 
        "id": "sg:person.011420256027.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420256027.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ICTA- FCEFyN-UNC, Av. V\u00e9lez S\u00e1rsfield 1611, CPAX5016GCA, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mar\u00edn", 
        "givenName": "Mar\u00eda A.", 
        "id": "sg:person.016376776174.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016376776174.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CONICET/Departamento de Qu\u00edmica Industrial y Aplicada, FCEFyN-UNC, Av. Velez S\u00e1rsfield 1611, CPAX5016GCA, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ribotta", 
        "givenName": "Pablo D.", 
        "id": "sg:person.01012320373.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012320373.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-474x(00)00015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010229975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s11535-006-0039-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012065185", 
          "https://doi.org/10.2478/s11535-006-0039-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00217-008-0838-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015836329", 
          "https://doi.org/10.1007/s00217-008-0838-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00217-008-0838-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015836329", 
          "https://doi.org/10.1007/s00217-008-0838-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408399409527649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020859172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2004.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024064221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-7765(03)00040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025499778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-7765(03)00040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025499778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2007.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031376299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-8146(94)90188-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034606241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-8146(94)90188-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034606241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13197-010-0082-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038939404", 
          "https://doi.org/10.1007/s13197-010-0082-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13197-010-0082-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038939404", 
          "https://doi.org/10.1007/s13197-010-0082-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lwt.2005.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044394290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2008.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045922123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-008-0080-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050056675", 
          "https://doi.org/10.1007/s11947-008-0080-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.1915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051788287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/fstl.1997.0247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054487951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf0009246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055896283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf0009246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055896283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1991.6972918x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070878250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3382/ps.0600393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071244083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3382/ps.0642314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071246085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3382/ps.0691749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071247759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/122.1.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077371348"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "This study was designed to optimize drying and inactivation of heat-labile inhibitors conditions of soybean by using a fluidized bed dryer, in order to shorten treatment time and to reduce losses in end-product quality such as soy flour color and soy protein solubility. The independent variables were initial moisture of soybeans, heating time and temperature of air entering the fluidization chamber. The response variables studied were final moisture of soybeans, inactivation of urease, soy flour color and soy protein solubility. Response surface methodology was able to model the response of the different studied variables. For each response group, relevant terms were included into an equation; the behavior of response was predicted within the experimental area and was presented as a response surface. The results suggested that a combination of soybean initial moisture of 0.14\u00a0g/g (wb), treatment time of 3.4\u00a0min and hot-air temperature of 136.5\u00a0\u00b0C could be a good processing combination of parameters for heating soybean using hot-air in order to reduce treatment time and quality losses in soybean flour. Thus, fluidized bed drying technology may be used as an alternative industrial method to eliminate the antinutritional factors. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13197-011-0434-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1006305", 
        "issn": [
          "0022-1155", 
          "0975-8402"
        ], 
        "name": "Journal of Food Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Optimization of soybean heat-treating using a fluidized bed dryer", 
    "pagination": "1144-1150", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "469a280a6a1ff96d91449c94bd559064dac7cc2df526934ba56467d2f6be2a50"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24426027"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0056471"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13197-011-0434-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014818885"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13197-011-0434-9", 
      "https://app.dimensions.ai/details/publication/pub.1014818885"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13197-011-0434-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13197-011-0434-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13197-011-0434-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13197-011-0434-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13197-011-0434-9'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13197-011-0434-9 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N69e7b1f28f0d46e4988d0e1fb10ddd4d
4 schema:citation sg:pub.10.1007/s00217-008-0838-6
5 sg:pub.10.1007/s11947-008-0080-z
6 sg:pub.10.1007/s13197-010-0082-5
7 sg:pub.10.2478/s11535-006-0039-x
8 https://doi.org/10.1002/jsfa.1915
9 https://doi.org/10.1006/fstl.1997.0247
10 https://doi.org/10.1016/0308-8146(94)90188-0
11 https://doi.org/10.1016/j.aca.2007.07.011
12 https://doi.org/10.1016/j.foodchem.2008.09.021
13 https://doi.org/10.1016/j.jfoodeng.2004.01.036
14 https://doi.org/10.1016/j.lwt.2005.05.013
15 https://doi.org/10.1016/s0022-474x(00)00015-1
16 https://doi.org/10.1016/s0927-7765(03)00040-7
17 https://doi.org/10.1021/jf0009246
18 https://doi.org/10.1080/10408399409527649
19 https://doi.org/10.1093/jn/122.1.151
20 https://doi.org/10.2527/1991.6972918x
21 https://doi.org/10.3382/ps.0600393
22 https://doi.org/10.3382/ps.0642314
23 https://doi.org/10.3382/ps.0691749
24 schema:datePublished 2013-12
25 schema:datePublishedReg 2013-12-01
26 schema:description This study was designed to optimize drying and inactivation of heat-labile inhibitors conditions of soybean by using a fluidized bed dryer, in order to shorten treatment time and to reduce losses in end-product quality such as soy flour color and soy protein solubility. The independent variables were initial moisture of soybeans, heating time and temperature of air entering the fluidization chamber. The response variables studied were final moisture of soybeans, inactivation of urease, soy flour color and soy protein solubility. Response surface methodology was able to model the response of the different studied variables. For each response group, relevant terms were included into an equation; the behavior of response was predicted within the experimental area and was presented as a response surface. The results suggested that a combination of soybean initial moisture of 0.14 g/g (wb), treatment time of 3.4 min and hot-air temperature of 136.5 °C could be a good processing combination of parameters for heating soybean using hot-air in order to reduce treatment time and quality losses in soybean flour. Thus, fluidized bed drying technology may be used as an alternative industrial method to eliminate the antinutritional factors.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N13b95d5c999a4dca99d3b27fda7035be
31 N6faaa11f9862499bb6ef3555215e5cb6
32 sg:journal.1006305
33 schema:name Optimization of soybean heat-treating using a fluidized bed dryer
34 schema:pagination 1144-1150
35 schema:productId N57e6427d99284a6bae50b58244d82aa6
36 N8bb1729c31a14464978151b2860af2e1
37 Ne0fec61452f74a0e87753d51caf7ad44
38 Ne952f978e69643ed9b0420ddcddd9a4c
39 Nffb30fa3ca3c40daa870ed9114e4b911
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014818885
41 https://doi.org/10.1007/s13197-011-0434-9
42 schema:sdDatePublished 2019-04-11T02:07
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N3d658533534b4504a0a37a82389fc624
45 schema:url http://link.springer.com/10.1007%2Fs13197-011-0434-9
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0adff515ef794a3b8e9a929a3f484239 schema:name IMBIV (CONICET-UNC), ICTA- FCEFyN-UNC, Av. Vélez Sársfield 1611, CPAX5016GCA, Córdoba, Argentina
50 rdf:type schema:Organization
51 N13b95d5c999a4dca99d3b27fda7035be schema:issueNumber 6
52 rdf:type schema:PublicationIssue
53 N2b3c1642ff7843f3a8b875cb646f54a3 rdf:first sg:person.01012320373.51
54 rdf:rest rdf:nil
55 N2fb4b402fd964de381163e5c9ef78581 schema:name CONICET/Departamento de Química Industrial y Aplicada, FCEFyN-UNC, Av. Velez Sársfield 1611, CPAX5016GCA, Córdoba, Argentina
56 rdf:type schema:Organization
57 N3d658533534b4504a0a37a82389fc624 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N57e6427d99284a6bae50b58244d82aa6 schema:name pubmed_id
60 schema:value 24426027
61 rdf:type schema:PropertyValue
62 N69e7b1f28f0d46e4988d0e1fb10ddd4d rdf:first sg:person.011420256027.43
63 rdf:rest Nfd5f6867b4e44159a57a197978849065
64 N6faaa11f9862499bb6ef3555215e5cb6 schema:volumeNumber 50
65 rdf:type schema:PublicationVolume
66 N8bb1729c31a14464978151b2860af2e1 schema:name readcube_id
67 schema:value 469a280a6a1ff96d91449c94bd559064dac7cc2df526934ba56467d2f6be2a50
68 rdf:type schema:PropertyValue
69 Nc5a5d65e1b2b4ed3a045d2bb2e91b66d schema:name ICTA- FCEFyN-UNC, Av. Vélez Sársfield 1611, CPAX5016GCA, Córdoba, Argentina
70 rdf:type schema:Organization
71 Ne0fec61452f74a0e87753d51caf7ad44 schema:name dimensions_id
72 schema:value pub.1014818885
73 rdf:type schema:PropertyValue
74 Ne952f978e69643ed9b0420ddcddd9a4c schema:name nlm_unique_id
75 schema:value 0056471
76 rdf:type schema:PropertyValue
77 Nfd5f6867b4e44159a57a197978849065 rdf:first sg:person.016376776174.07
78 rdf:rest N2b3c1642ff7843f3a8b875cb646f54a3
79 Nffb30fa3ca3c40daa870ed9114e4b911 schema:name doi
80 schema:value 10.1007/s13197-011-0434-9
81 rdf:type schema:PropertyValue
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
86 schema:name Environmental Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1006305 schema:issn 0022-1155
89 0975-8402
90 schema:name Journal of Food Science and Technology
91 rdf:type schema:Periodical
92 sg:person.01012320373.51 schema:affiliation N2fb4b402fd964de381163e5c9ef78581
93 schema:familyName Ribotta
94 schema:givenName Pablo D.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012320373.51
96 rdf:type schema:Person
97 sg:person.011420256027.43 schema:affiliation N0adff515ef794a3b8e9a929a3f484239
98 schema:familyName Martínez
99 schema:givenName Marcela L.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420256027.43
101 rdf:type schema:Person
102 sg:person.016376776174.07 schema:affiliation Nc5a5d65e1b2b4ed3a045d2bb2e91b66d
103 schema:familyName Marín
104 schema:givenName María A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016376776174.07
106 rdf:type schema:Person
107 sg:pub.10.1007/s00217-008-0838-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015836329
108 https://doi.org/10.1007/s00217-008-0838-6
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11947-008-0080-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050056675
111 https://doi.org/10.1007/s11947-008-0080-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s13197-010-0082-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038939404
114 https://doi.org/10.1007/s13197-010-0082-5
115 rdf:type schema:CreativeWork
116 sg:pub.10.2478/s11535-006-0039-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012065185
117 https://doi.org/10.2478/s11535-006-0039-x
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/jsfa.1915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051788287
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1006/fstl.1997.0247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054487951
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0308-8146(94)90188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034606241
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.aca.2007.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031376299
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.foodchem.2008.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045922123
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jfoodeng.2004.01.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024064221
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.lwt.2005.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044394290
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0022-474x(00)00015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010229975
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0927-7765(03)00040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025499778
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/jf0009246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055896283
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/10408399409527649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020859172
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/jn/122.1.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077371348
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2527/1991.6972918x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070878250
144 rdf:type schema:CreativeWork
145 https://doi.org/10.3382/ps.0600393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071244083
146 rdf:type schema:CreativeWork
147 https://doi.org/10.3382/ps.0642314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071246085
148 rdf:type schema:CreativeWork
149 https://doi.org/10.3382/ps.0691749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071247759
150 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...